Supervised algorithm selection for flow and other computer vision problems

Motion estimation is one of the core problems of computer vision. Given two or more frames from a video sequence, the goal is to find the temporal correspondence for one or more points from the sequence. For dense motion estimation, or optical flow, a dense correspondence field is sought between the pair of frames. A standard approach to optical flow involves constructing an energy function and then using some optimization scheme to find its minimum. These energy functions are hand designed to work well generally, with the intention that the global minimum corresponds to the ground truth temporal correspondence. As an alternative to these heuristic energy functions we aim to assess the quality of existing algorithms directly from training data. We show that the addition of an offline training phase can improve the quality of motion estimation. For optical flow, decisions such as which algorithm to use and when to trust its accuracy, can all be learned from training data. Generating ground truth optical flow data is a difficult and time consuming process. We propose the use of synthetic data for training and present a new dataset for optical flow evaluation and a tool for generating an unlimited quantity of ground truth correspondence data. We use this method for generating data to synthesize depth images for the problem of depth image super-resolution and show that it is superior to real data. We present results for optical flow confidence estimation with improved performance on a standard benchmark dataset. Using a similar feature representation, we extend this work to occlusion region detection and present state of the art results for challenging real scenes. Finally, given a set of different algorithms we treat optical flow estimation as the problem of choosing the best algorithm from this set for a given pixel. However, posing algorithm selection as a standard classification problem assumes that class labels are disjoint. For each training example it is assumed that there is only one class label that correctly describes it, and that all other labels are equally bad. To overcome this, we propose a novel example dependent cost-sensitive learning algorithm based on decision trees where each label is instead a vector representing a data point's affinity for each of the algorithms. We show that this new algorithm has improved accuracy compared to other classification baselines on several computer vision problems.

[1]  Bo Peng,et al.  Parameter Selection for Graph Cut Based Image Segmentation , 2008, BMVC.

[2]  Raanan Fattal,et al.  Image upsampling via imposed edge statistics , 2007, ACM Trans. Graph..

[3]  Sebastian Nowozin,et al.  Decision tree fields , 2011, 2011 International Conference on Computer Vision.

[4]  Sebastian Thrun,et al.  3D shape scanning with a time-of-flight camera , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Edward H. Adelson,et al.  Probability distributions of optical flow , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Horst Bischof,et al.  Motion estimation with non-local total variation regularization , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Zhi-Hua Zhou,et al.  ON MULTI‐CLASS COST‐SENSITIVE LEARNING , 2006, Comput. Intell..

[8]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[9]  Brendan McCane,et al.  Generating motion fields of complex scenes , 1999, 1999 Proceedings Computer Graphics International.

[10]  Jan Kautz,et al.  The State of the Art in Interactive Global Illumination , 2012, Comput. Graph. Forum.

[11]  Geoffrey E. Hinton,et al.  Using Pairs of Data-Points to Define Splits for Decision Trees , 1995, NIPS.

[12]  S. Meister,et al.  Real versus realistically rendered scenes for optical flow evaluation , 2011, 2011 14th ITG Conference on Electronic Media Technology.

[13]  Rich Caruana,et al.  An empirical comparison of supervised learning algorithms , 2006, ICML.

[14]  Daniel Cohen-Or,et al.  Surface reconstruction using local shape priors , 2007, Symposium on Geometry Processing.

[15]  Marc Pollefeys,et al.  Segmenting video into classes of algorithm-suitability , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Arnold W. M. Smeulders,et al.  The Amsterdam Library of Object Images , 2004, International Journal of Computer Vision.

[17]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Benedikt Waldvogel Accelerating Random Forests on CPUs and GPUs for Object-Class Image Segmentation , 2013 .

[19]  Ce Liu,et al.  Markov Random Fields for Super-resolution and Texture Synthesis , 2010 .

[20]  Hans-Peter Seidel,et al.  Complementary Optic Flow , 2009, EMMCVPR.

[21]  Daniel Cremers,et al.  Anisotropic Huber-L1 Optical Flow , 2009, BMVC.

[22]  Raanan Fattal,et al.  Image upsampling via texture hallucination , 2010, 2010 IEEE International Conference on Computational Photography (ICCP).

[23]  Edward H. Adelson,et al.  Human-assisted motion annotation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Hsuan-Tien Lin,et al.  One-sided Support Vector Regression for Multiclass Cost-sensitive Classification , 2010, ICML.

[25]  Ruigang Yang,et al.  Spatial-Depth Super Resolution for Range Images , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  J. Weickert,et al.  Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods , 2005 .

[27]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[29]  Bernd Jähne,et al.  Theoretical and experimental error analysis of continuous-wave time-of-flight range cameras , 2009, Optical Engineering.

[30]  Ashutosh Saxena,et al.  Robotic Grasping of Novel Objects , 2006, NIPS.

[31]  Andrew J. Davison,et al.  Real-Time Camera Tracking: When is High Frame-Rate Best? , 2012, ECCV.

[32]  Cordelia Schmid,et al.  Action recognition by dense trajectories , 2011, CVPR 2011.

[33]  Michael S. Brown,et al.  High quality depth map upsampling for 3D-TOF cameras , 2011, 2011 International Conference on Computer Vision.

[34]  Martial Hebert,et al.  Occlusion Boundaries from Motion: Low-Level Detection and Mid-Level Reasoning , 2009, International Journal of Computer Vision.

[35]  Michael J. Black,et al.  Learning Optical Flow , 2008, ECCV.

[36]  Dani Lischinski,et al.  Colorization using optimization , 2004, ACM Trans. Graph..

[37]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[38]  Wojciech Matusik,et al.  CG2Real: Improving the Realism of Computer Generated Images Using a Large Collection of Photographs , 2011, IEEE Transactions on Visualization and Computer Graphics.

[39]  Sebastian Thrun,et al.  An Application of Markov Random Fields to Range Sensing , 2005, NIPS.

[40]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[41]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[42]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[43]  Theo Gevers,et al.  Per-patch Descriptor Selection Using Surface and Scene Properties , 2012, ECCV.

[44]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[45]  Benjamin Höferlin,et al.  Evaluation of background subtraction techniques for video surveillance , 2011, CVPR 2011.

[46]  Kai Ming Ting,et al.  An Instance-weighting Method to Induce Cost-sensitive Trees , 2001 .

[47]  Sylvain Paris,et al.  SimpleFlow: A Non‐iterative, Sublinear Optical Flow Algorithm , 2012, Comput. Graph. Forum.

[48]  Andrew Zisserman,et al.  Image Classification using Random Forests and Ferns , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[49]  Kristen Grauman,et al.  Cost-Sensitive Active Visual Category Learning , 2010, International Journal of Computer Vision.

[50]  Wenbin Li,et al.  Optical Flow Estimation Using Laplacian Mesh Energy , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  S. Lippman,et al.  The Scripps Institution of Oceanography , 1959, Nature.

[52]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Hans-Hellmut Nagel,et al.  Optical Flow Estimation: Advances and Comparisons , 1994, ECCV.

[54]  Michael J. Black,et al.  A Fully-Connected Layered Model of Foreground and Background Flow , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Gabriel J. Brostow,et al.  Patch Based Synthesis for Single Depth Image Super-Resolution , 2012, ECCV.

[56]  Xiaoyan Hu,et al.  A Quantitative Evaluation of Confidence Measures for Stereo Vision , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  Philip H. S. Torr An assessment of information criteria for motion model selection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[58]  Yali Amit,et al.  Shape Quantization and Recognition with Randomized Trees , 1997, Neural Computation.

[59]  Peter Kontschieder,et al.  Structured class-labels in random forests for semantic image labelling , 2011, 2011 International Conference on Computer Vision.

[60]  Wojciech Matusik,et al.  A statistical model for synthesis of detailed facial geometry , 2006, SIGGRAPH 2006.

[61]  Stephen Gould,et al.  Decomposing a scene into geometric and semantically consistent regions , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[62]  Sebastian Nowozin,et al.  Regression Tree Fields — An efficient, non-parametric approach to image labeling problems , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[63]  Michael J. Black,et al.  Lessons and Insights from Creating a Synthetic Optical Flow Benchmark , 2012, ECCV Workshops.

[64]  Michal Irani,et al.  Super-resolution from a single image , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[65]  Minglun Gong,et al.  Estimate Large Motions Using the Reliability-Based Motion Estimation Algorithm , 2006, International Journal of Computer Vision.

[66]  Rudolf Mester,et al.  A Statistical Confidence Measure for Optical Flows , 2008, ECCV.

[67]  William T. Freeman,et al.  Learning low-level vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[68]  David J. Kriegman,et al.  Automated annotation of coral reef survey images , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[69]  Tobias Pietzsch,et al.  A Framework For Evaluating Visual SLAM , 2009, BMVC.

[70]  Gang Hua,et al.  Picking the best DAISY , 2009, CVPR.

[71]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[72]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[73]  Luc Van Gool,et al.  Interactive object detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[74]  A. Verri,et al.  A computational approach to motion perception , 1988, Biological Cybernetics.

[75]  Sebastian Thrun,et al.  LidarBoost: Depth superresolution for ToF 3D shape scanning , 2009, CVPR.

[76]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[77]  Roberto Cipolla,et al.  Learning to track with multiple observers , 2009, CVPR.

[78]  Michael J. Black,et al.  MPI-SINTEL OPTICAL FLOW BENCHMARK : SUPPLEMENTAL MATERIAL , 2012 .

[79]  Andrew W. Fitzgibbon,et al.  Fields of Experts for Image-based Rendering , 2006, BMVC.

[80]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[81]  Bianca Zadrozny,et al.  Learning and making decisions when costs and probabilities are both unknown , 2001, KDD '01.

[82]  John Langford,et al.  An iterative method for multi-class cost-sensitive learning , 2004, KDD.

[83]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[84]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[85]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[86]  Vincent Lepetit,et al.  Keypoint recognition using randomized trees , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[87]  Dimitris N. Metaxas,et al.  Entangled Decision Forests and Their Application for Semantic Segmentation of CT Images , 2011, IPMI.

[88]  Marc Alexa,et al.  Exposure Fusion for Time‐Of‐Flight Imaging , 2011, Comput. Graph. Forum.

[89]  Bernd Jähne,et al.  An Adaptive Confidence Measure for Optical Flows Based on Linear Subspace Projections , 2007, DAGM-Symposium.

[90]  Seth J. Teller,et al.  Particle Video: Long-Range Motion Estimation Using Point Trajectories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[91]  Carsten Rother,et al.  FusionFlow: Discrete-continuous optimization for optical flow estimation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[92]  Antonio Criminisi,et al.  Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning , 2012, Found. Trends Comput. Graph. Vis..

[93]  Carsten Rother,et al.  Depth Super Resolution by Rigid Body Self-Similarity in 3D , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[94]  Gerardo Hermosillo,et al.  Supervised learning from multiple experts: whom to trust when everyone lies a bit , 2009, ICML '09.

[95]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[96]  R. Lane,et al.  Measuring confidence in optical flow estimation , 1996 .

[97]  Michael J. Black,et al.  Mixture models for optical flow computation , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[98]  Sebastian Nowozin,et al.  Improved Information Gain Estimates for Decision Tree Induction , 2012, ICML.

[99]  Sebastian Thrun,et al.  High-quality scanning using time-of-flight depth superresolution , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[100]  Hsuan-Tien Lin,et al.  A simple methodology for soft cost-sensitive classification , 2012, KDD.

[101]  Frédéric Jurie,et al.  Motion Models that Only Work Sometimes , 2012, BMVC.

[102]  Markus H. Gross,et al.  FreeCam: A Hybrid Camera System for Interactive Free-Viewpoint Video , 2011, VMV.

[103]  Jan Kybic,et al.  Bootstrap optical flow confidence and uncertainty measure , 2011, Comput. Vis. Image Underst..

[104]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[105]  Sebastian Thrun,et al.  A Noise‐aware Filter for Real‐time Depth Upsampling , 2008 .

[106]  David Vázquez,et al.  Learning appearance in virtual scenarios for pedestrian detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[107]  Richard Szeliski,et al.  An integrated Bayesian approach to layer extraction from image sequences , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[108]  Philip H. S. Torr,et al.  VideoTrace: rapid interactive scene modelling from video , 2007, SIGGRAPH 2007.

[109]  Pedro M. Domingos MetaCost: a general method for making classifiers cost-sensitive , 1999, KDD '99.

[110]  J. Weickert,et al.  A Confidence Measure for Variational Optic flow Methods , 2006 .

[111]  Marc Pollefeys,et al.  Learning a Confidence Measure for Optical Flow , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[112]  Ming Tan,et al.  Cost-sensitive learning of classification knowledge and its applications in robotics , 2004, Machine Learning.

[113]  Pietro Perona,et al.  Integral Channel Features , 2009, BMVC.

[114]  Gerhard Rigoll,et al.  Resolution Enhancement of PMD Range Maps , 2008, DAGM-Symposium.

[115]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[116]  Lei Yang,et al.  Antialiasing recovery , 2011, TOGS.

[117]  Gabriel J. Brostow,et al.  Learning to find occlusion regions , 2011, CVPR 2011.

[118]  Ullrich Köthe,et al.  On Oblique Random Forests , 2011, ECML/PKDD.

[119]  Toby Sharp,et al.  Implementing Decision Trees and Forests on a GPU , 2008, ECCV.

[120]  Jörg Stückler,et al.  Towards Semantic Scene Analysis with Time-of-Flight Cameras , 2010, RoboCup.

[121]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[122]  Pietro Perona,et al.  High-throughput Ethomics in Large Groups of Drosophila , 2009, Nature Methods.

[123]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[124]  Kai Wang,et al.  End-to-end scene text recognition , 2011, 2011 International Conference on Computer Vision.

[125]  Jitendra Malik,et al.  Recovering human body configurations: combining segmentation and recognition , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[126]  Rongchun Zhao,et al.  Learning-based algorithm selection for image segmentation , 2005, Pattern Recognit. Lett..

[127]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[128]  Ulf Brefeld,et al.  Support Vector Machines with Example Dependent Costs , 2003, ECML.

[129]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[130]  Daniel Cremers,et al.  An Improved Algorithm for TV-L 1 Optical Flow , 2009, Statistical and Geometrical Approaches to Visual Motion Analysis.

[131]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[132]  David Mumford,et al.  Statistics of range images , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[133]  W. John Kress,et al.  Leafsnap: A Computer Vision System for Automatic Plant Species Identification , 2012, ECCV.

[134]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[135]  Rong Xiao,et al.  Rank-SIFT: Learning to rank repeatable local interest points , 2011, CVPR 2011.

[136]  Daniel Cremers,et al.  Structure- and motion-adaptive regularization for high accuracy optic flow , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[137]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[138]  Ali Farhadi,et al.  Describing objects by their attributes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[139]  Jiejie Zhu,et al.  Context-constrained hallucination for image super-resolution , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[140]  Antonio Torralba,et al.  Evaluation of image features using a photorealistic virtual world , 2011, 2011 International Conference on Computer Vision.

[141]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[142]  Stefano Soatto,et al.  Sparse Occlusion Detection with Optical Flow , 2012, International Journal of Computer Vision.

[143]  Martin J. Wainwright,et al.  MAP estimation via agreement on (hyper)trees: Message-passing and linear programming , 2005, ArXiv.

[144]  John Langford,et al.  Cost-sensitive learning by cost-proportionate example weighting , 2003, Third IEEE International Conference on Data Mining.

[145]  Luc Van Gool,et al.  Hough Forests for Object Detection, Tracking, and Action Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[146]  Hans-Peter Seidel,et al.  A Statistical Model of Human Pose and Body Shape , 2009, Comput. Graph. Forum.

[147]  Horst Bischof,et al.  A Duality Based Approach for Realtime TV-L1 Optical Flow , 2007, DAGM-Symposium.

[148]  Oscar Beijbom,et al.  Domain Adaptations for Computer Vision Applications , 2012, ArXiv.

[149]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[150]  Michael J. Black,et al.  Fields of Experts , 2009, International Journal of Computer Vision.

[151]  Peter Kontschieder,et al.  Context-Sensitive Decision Forests for Object Detection , 2012, NIPS.

[152]  Antonio Criminisi,et al.  Regression Forests for Efficient Anatomy Detection and Localization in CT Studies , 2010, MCV.

[153]  Brendan McCane,et al.  On Benchmarking Optical Flow , 2001, Comput. Vis. Image Underst..

[154]  Tim Weyrich,et al.  Capturing Time-of-Flight data with confidence , 2011, CVPR 2011.

[155]  Richard Szeliski,et al.  High-accuracy stereo depth maps using structured light , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[156]  Manik Varma,et al.  Multi-label learning with millions of labels: recommending advertiser bid phrases for web pages , 2013, WWW.

[157]  Stefan K. Gehrig,et al.  A real-time multi-cue framework for determining optical flow confidence , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[158]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[159]  Andrew J. Chosak,et al.  OVVV: Using Virtual Worlds to Design and Evaluate Surveillance Systems , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[160]  Edward H. Adelson,et al.  Layered representation for motion analysis , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[161]  Horst Bischof,et al.  On-line Random Forests , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[162]  Radu Horaud,et al.  Scene flow estimation by growing correspondence seeds , 2011, CVPR 2011.

[163]  Lawrence Carin,et al.  Cost-sensitive feature acquisition and classification , 2007, Pattern Recognit..

[164]  Michael J. Black,et al.  On the Spatial Statistics of Optical Flow , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[165]  Michal Irani,et al.  Internal statistics of a single natural image , 2011, CVPR 2011.

[166]  Leonidas J. Guibas,et al.  Acquiring 3D indoor environments with variability and repetition , 2012, ACM Trans. Graph..

[167]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[168]  Michal Irani,et al.  Improving resolution by image registration , 1991, CVGIP Graph. Model. Image Process..

[169]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[170]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[171]  Daniel Kondermann,et al.  Is Crowdsourcing for Optical Flow Ground Truth Generation Feasible? , 2013, ICVS.

[172]  Charles Elkan,et al.  The Foundations of Cost-Sensitive Learning , 2001, IJCAI.

[173]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[174]  Roberto Cipolla,et al.  Semantic texton forests for image categorization and segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[175]  Angel Domingo Sappa,et al.  An empirical study on optical flow accuracy depending on vehicle speed , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[176]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[177]  S. Meister Photon Mapping based Simulation of MultiPath Reflection Artifacts in Time-of-Flight Sensors , 2012 .

[178]  Alain Trémeau,et al.  Fusion of dense spatial features and sparse temporal features for three-dimensional structure estimation in urban scenes , 2013, IET Comput. Vis..

[179]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[180]  Song-Chun Zhu Filters, Random Fields and Maximum Entropy (FRAME): Towards a Unified Theory for Texture Modeling , 1998 .

[181]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[182]  Michael J. Black,et al.  Layered segmentation and optical flow estimation over time , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[183]  Vladlen Koltun,et al.  Efficient Nonlocal Regularization for Optical Flow , 2012, ECCV.