Characters, coadjoint orbits and Duistermaat-Heckman integrals
暂无分享,去创建一个
[1] N. Nekrasov,et al. Darboux coordinates, Yang-Yang functional, and gauge theory , 2011, 1103.3919.
[2] E. Witten,et al. Fermionic localization of the schwarzian theory , 2017, Journal of High Energy Physics.
[3] Harish-Chandra. Differential Operators on a Semisimple Lie Algebra , 1957 .
[4] Robert Wendt. A symplectic approach to certain functional integrals and partition functions , 2001 .
[5] M. Vergne,et al. Zeros d’un champ de vecteurs et classes caracteristiques equivariantes , 1983 .
[6] R. Picken. The propagator for quantum mechanics on a group manifold from an infinite-dimensional analogue of the Duistermaat-Heckman integration formula , 1989 .
[7] I. Frenkel. Orbital theory for affine Lie algebras , 1984 .
[8] Asymptotic expansions of Lambert series and related q-series , 2017 .
[9] B. Janssens. Loop groups , 2016 .
[10] Pierre Mathieu,et al. Conformal Field Theory , 1999 .
[11] Kirillov–Frenkel character formula for loop groups, radial part and Brownian sheet , 2016, The Annals of Probability.
[12] A. Pressley,et al. Convexity and Loop Groups , 1983 .
[13] M. Piątek. Classical conformal blocks from TBA for the elliptic Calogero-Moser system , 2011, 1102.5403.
[14] P. Bougerol,et al. Pitman transforms and Brownian motion in the interval viewed as an affine alcove , 2018, Annales scientifiques de l'École Normale Supérieure.
[15] Eugene Lerman,et al. Symplectic Fibrations And Multiplicity Diagrams , 1996 .
[16] E. Witten. Analytic Continuation Of Chern-Simons Theory , 2010, 1001.2933.
[17] A. Alekseev,et al. Quantization of symplectic orbits of compact Lie groups by means of the functional integral , 1988 .
[18] J. Teschner. Classical conformal blocks and isomonodromic deformations , 2017, 1707.07968.
[19] J. Maldacena,et al. Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space , 2016, 1606.01857.
[20] D. B. Fuks,et al. Verma modules over the virasoro algebra , 1984 .
[21] E. Witten. Coadjoint orbits of the Virasoro group , 1988 .
[22] Ye,et al. Gapless spin-fluid ground state in a random quantum Heisenberg magnet. , 1992, Physical review letters.
[23] S. Shenker,et al. JT gravity as a matrix integral , 2019, 1903.11115.
[24] Michael Atiyah,et al. The moment map and equivariant cohomology , 1984 .
[25] B. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .
[26] T. Mertens,et al. Solving the Schwarzian via the conformal bootstrap , 2017, 1705.08408.
[27] J. Bismut. The hypoelliptic Laplacian on a compact Lie group , 2008 .
[28] T. Mertens,et al. An investigation of AdS2 backreaction and holography , 2016, 1606.03438.
[29] A. Kirillov. Infinite dimensional lie groups; their orbits, invariants and representations. The geometry of moments , 1982 .
[30] T. Mertens,et al. Defects in Jackiw-Teitelboim quantum gravity , 2019, Journal of High Energy Physics.
[31] J. Duistermaat,et al. On the variation in the cohomology of the symplectic form of the reduced phase space , 1982 .
[32] C. Itzykson,et al. The planar approximation. II , 1980 .
[33] A. Kirillov,et al. Representations of the Virasoro algebra by the orbit method , 1988 .
[34] V. Lazutkin,et al. Normal forms and versal deformations for Hill's equation , 1975 .
[35] Lambert series and q-functions near q=1 , 2016, 1602.01085.
[36] Jialing Dai,et al. The orbit method and the Virasoro extension of Diff+(S1): I. Orbital integrals , 2003 .
[37] M. Piątek. Classical torus conformal block, $ \mathcal{N} $ = 2∗ twisted superpotential and the accessory parameter of Lamé equation , 2013, 1309.7672.
[38] N. Nekrasov,et al. Quantization of Integrable Systems and Four Dimensional Gauge Theories , 2009, 0908.4052.
[39] L. Alday,et al. Liouville Correlation Functions from Four-Dimensional Gauge Theories , 2009, 0906.3219.
[40] A. Alekseev,et al. Path integral quantization of the coadjoint orbits of the virasoro group and 2-d gravity , 1989 .
[41] L. Jeffrey,et al. Hyperfunctions, the Duistermaat–Heckman Theorem and Loop Groups , 2017, Geometry and Physics: Volume I.
[42] L. A. Takhtadzhyan,et al. ON LIOUVILLE'S EQUATION, ACCESSORY PARAMETERS, AND THE GEOMETRY OF TEICHMÜLLER SPACE FOR RIEMANN SURFACES OF GENUS 0 , 1988 .
[43] F. Valach,et al. Schwarzian quantum mechanics as a Drinfeld-Sokolov reduction of BF theory , 2019, Journal of High Energy Physics.
[44] J. Teschner. Quantization of the Hitchin moduli spaces, Liouville theory, and the geometric Langlands correspondence I , 2010, 1005.2846.