Characters, coadjoint orbits and Duistermaat-Heckman integrals

The asymptotics of characters $\chi_{k\lambda}(\exp(h/k))$ of irreducible representations of a compact Lie group $G$ for large values of the scaling factor $k$ are given by Duistermaat-Heckman (DH) integrals over coadjoint orbits of $G$. This phenomenon generalises to coadjoint orbits of central extensions of loop groups $\widehat{LG}$ and of diffeomorphisms of the circle $\widehat{\rm Diff}(S^1)$. We show that the asymptotics of characters of integrable modules of affine Kac-Moody algebras and of the Virasoro algebra factorize into a divergent contribution of the standard form and a convergent contribution which can be interpreted as a formal DH orbital integral. For some Virasoro modules, our results match the formal DH integrals recently computed by Stanford and Witten. In this case, the $k$-scaling has the same origin as the one which gives rise to classical conformal blocks. Furthermore, we consider reduced spaces of Virasoro coadjoint orbits and we suggest a new invariant which replaces symplectic volume in the infinite dimensional situation. We also consider other modules of the Virasoro algebra (in particular, the modules corresponding to minimal models) and we obtain DH-type expressions which do not correspond to any Virasoro coadjoint orbits. We study volume functions $V(x)$ corresponding to formal DH integrals over coadjoint orbits of the Virasoro algebra. We show that they are related by the Hankel transform to spectral densities $\rho(E)$ recently studied by Saad, Shenker and Stanford.

[1]  N. Nekrasov,et al.  Darboux coordinates, Yang-Yang functional, and gauge theory , 2011, 1103.3919.

[2]  E. Witten,et al.  Fermionic localization of the schwarzian theory , 2017, Journal of High Energy Physics.

[3]  Harish-Chandra Differential Operators on a Semisimple Lie Algebra , 1957 .

[4]  Robert Wendt A symplectic approach to certain functional integrals and partition functions , 2001 .

[5]  M. Vergne,et al.  Zeros d’un champ de vecteurs et classes caracteristiques equivariantes , 1983 .

[6]  R. Picken The propagator for quantum mechanics on a group manifold from an infinite-dimensional analogue of the Duistermaat-Heckman integration formula , 1989 .

[7]  I. Frenkel Orbital theory for affine Lie algebras , 1984 .

[8]  Asymptotic expansions of Lambert series and related q-series , 2017 .

[9]  B. Janssens Loop groups , 2016 .

[10]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[11]  Kirillov–Frenkel character formula for loop groups, radial part and Brownian sheet , 2016, The Annals of Probability.

[12]  A. Pressley,et al.  Convexity and Loop Groups , 1983 .

[13]  M. Piątek Classical conformal blocks from TBA for the elliptic Calogero-Moser system , 2011, 1102.5403.

[14]  P. Bougerol,et al.  Pitman transforms and Brownian motion in the interval viewed as an affine alcove , 2018, Annales scientifiques de l'École Normale Supérieure.

[15]  Eugene Lerman,et al.  Symplectic Fibrations And Multiplicity Diagrams , 1996 .

[16]  E. Witten Analytic Continuation Of Chern-Simons Theory , 2010, 1001.2933.

[17]  A. Alekseev,et al.  Quantization of symplectic orbits of compact Lie groups by means of the functional integral , 1988 .

[18]  J. Teschner Classical conformal blocks and isomonodromic deformations , 2017, 1707.07968.

[19]  J. Maldacena,et al.  Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space , 2016, 1606.01857.

[20]  D. B. Fuks,et al.  Verma modules over the virasoro algebra , 1984 .

[21]  E. Witten Coadjoint orbits of the Virasoro group , 1988 .

[22]  Ye,et al.  Gapless spin-fluid ground state in a random quantum Heisenberg magnet. , 1992, Physical review letters.

[23]  S. Shenker,et al.  JT gravity as a matrix integral , 2019, 1903.11115.

[24]  Michael Atiyah,et al.  The moment map and equivariant cohomology , 1984 .

[25]  B. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .

[26]  T. Mertens,et al.  Solving the Schwarzian via the conformal bootstrap , 2017, 1705.08408.

[27]  J. Bismut The hypoelliptic Laplacian on a compact Lie group , 2008 .

[28]  T. Mertens,et al.  An investigation of AdS2 backreaction and holography , 2016, 1606.03438.

[29]  A. Kirillov Infinite dimensional lie groups; their orbits, invariants and representations. The geometry of moments , 1982 .

[30]  T. Mertens,et al.  Defects in Jackiw-Teitelboim quantum gravity , 2019, Journal of High Energy Physics.

[31]  J. Duistermaat,et al.  On the variation in the cohomology of the symplectic form of the reduced phase space , 1982 .

[32]  C. Itzykson,et al.  The planar approximation. II , 1980 .

[33]  A. Kirillov,et al.  Representations of the Virasoro algebra by the orbit method , 1988 .

[34]  V. Lazutkin,et al.  Normal forms and versal deformations for Hill's equation , 1975 .

[35]  Lambert series and q-functions near q=1 , 2016, 1602.01085.

[36]  Jialing Dai,et al.  The orbit method and the Virasoro extension of Diff+(S1): I. Orbital integrals , 2003 .

[37]  M. Piątek Classical torus conformal block, $ \mathcal{N} $ = 2∗ twisted superpotential and the accessory parameter of Lamé equation , 2013, 1309.7672.

[38]  N. Nekrasov,et al.  Quantization of Integrable Systems and Four Dimensional Gauge Theories , 2009, 0908.4052.

[39]  L. Alday,et al.  Liouville Correlation Functions from Four-Dimensional Gauge Theories , 2009, 0906.3219.

[40]  A. Alekseev,et al.  Path integral quantization of the coadjoint orbits of the virasoro group and 2-d gravity , 1989 .

[41]  L. Jeffrey,et al.  Hyperfunctions, the Duistermaat–Heckman Theorem and Loop Groups , 2017, Geometry and Physics: Volume I.

[42]  L. A. Takhtadzhyan,et al.  ON LIOUVILLE'S EQUATION, ACCESSORY PARAMETERS, AND THE GEOMETRY OF TEICHMÜLLER SPACE FOR RIEMANN SURFACES OF GENUS 0 , 1988 .

[43]  F. Valach,et al.  Schwarzian quantum mechanics as a Drinfeld-Sokolov reduction of BF theory , 2019, Journal of High Energy Physics.

[44]  J. Teschner Quantization of the Hitchin moduli spaces, Liouville theory, and the geometric Langlands correspondence I , 2010, 1005.2846.