Reachability analysis for timed automata using max-plus algebra

We show that max-plus polyhedra are usable as a data structure in reachability analysis of timed automata. Drawing inspiration from the extensive work that has been done on difference bound matrices, as well as previous work on max-plus polyhedra in other areas, we develop the algorithms needed to perform forward and backward reachability analysis using max-plus polyhedra. To show that the approach works in practice and theory alike, we have created a proof-of-concept implementation on top of the model checker opaal.

[1]  Amir Pnueli,et al.  Some Progress in the Symbolic Verification of Timed Automata , 1997, CAV.

[2]  Satoshi Yamane,et al.  The symbolic model-checking for real-time systems , 1996, Proceedings of the Eighth Euromicro Workshop on Real-Time Systems.

[3]  Qi Lu,et al.  Computations on Zones using Max-Plus Algebra , 2010 .

[4]  Wang Yi,et al.  Efficient Timed Reachability Analysis Using Clock Difference Diagrams , 1998, CAV.

[5]  Ricardo D. Katz,et al.  The Minkowski theorem for max-plus convex sets , 2006, math/0605078.

[6]  Wang Yi,et al.  Clock Difference Diagrams , 1998, Nord. J. Comput..

[7]  David L. Dill,et al.  Timing Assumptions and Verification of Finite-State Concurrent Systems , 1989, Automatic Verification Methods for Finite State Systems.

[8]  H. Schneider,et al.  Generators, extremals and bases of max cones , 2006, math/0604454.

[9]  Eric Goubault,et al.  The tropical double description method , 2010, STACS.

[10]  Kim G. Larsen,et al.  Verification, Performance Analysis and Controller Synthesis for Real-Time Systems , 2009, FSEN.

[11]  Roberto Giacobazzi,et al.  Compositional Optimization of Disjunctive Abstract Interpretations , 1996, ESOP.

[12]  Kim G. Larsen,et al.  Lower and Upper Bounds in Zone Based Abstractions of Timed Automata , 2004, TACAS.

[13]  Patricia Bouyer,et al.  Diagonal Constraints in Timed Automata: Forward Analysis of Timed Systems , 2005, FORMATS.

[14]  Sriram Sankaranarayanan,et al.  Static Analysis in Disjunctive Numerical Domains , 2006, SAS.

[15]  Henrik Reif Andersen,et al.  Difference Decision Diagrams , 1999, CSL.

[16]  Sergio Yovine,et al.  KRONOS: a verification tool for real-time systems , 1997, International Journal on Software Tools for Technology Transfer.

[17]  Antoine Miné,et al.  The octagon abstract domain , 2001, Proceedings Eighth Working Conference on Reverse Engineering.

[18]  Antoine Miné,et al.  A New Numerical Abstract Domain Based on Difference-Bound Matrices , 2001, PADO.

[19]  Rüdiger Ehlers,et al.  Fully Symbolic Timed Model Checking Using Constraint Matrix Diagrams , 2010, 2010 31st IEEE Real-Time Systems Symposium.

[20]  Kim G. Larsen,et al.  opaal: A Lattice Model Checker , 2011, NASA Formal Methods.

[21]  Nicolas Halbwachs,et al.  An implementation of three algorithms for timing verification based on automata emptiness , 1992, [1992] Proceedings Real-Time Systems Symposium.

[22]  Amir Pnueli,et al.  Data-Structures for the Verification of Timed Automata , 1997, HART.

[23]  Roberto Bagnara,et al.  Possibly Not Closed Convex Polyhedra and the Parma Polyhedra Library , 2002, SAS.

[24]  Nicolas Halbwachs,et al.  Automatic discovery of linear restraints among variables of a program , 1978, POPL.

[25]  .. S. Leue Reactive Systems in , 1995 .

[26]  Johan Bengtsson,et al.  Clocks, DBMS and States in Timed Systems , 2002 .

[27]  Eric Goubault,et al.  Inferring Min and Max Invariants Using Max-Plus Polyhedra , 2008, SAS.

[28]  Kim G. Larsen,et al.  Lower and upper bounds in zone-based abstractions of timed automata , 2004, International Journal on Software Tools for Technology Transfer.

[29]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..