Constructing functions with prescribed pathwise quadratic variation

We construct rich vector spaces of continuous functions with prescribed curved or linear pathwise quadratic variations. We also construct a class of functions whose quadratic variation may depend in a local and nonlinear way on the function value. These functions can then be used as integrators in F\"ollmer's pathwise It\=o calculus. Our construction of the latter class of functions relies on an extension of the Doss--Sussman method to a class of nonlinear It\=o differential equations for the F\"ollmer integral. As an application, we provide a deterministic variant of the support theorem for diffusions. We also establish that many of the constructed functions are nowhere differentiable.

[1]  Terry Lyons,et al.  Uncertain volatility and the risk-free synthesis of derivatives , 1995 .

[2]  V. Bogachëv,et al.  Liens entre équations différentielles stochastiques et ordinaires en dimension infinie , 1995 .

[3]  Alexander Schied,et al.  Robustness of Delta Hedging for Path-Dependent Options in Local Volatility Models , 2007, Journal of Applied Probability.

[4]  Walter Willinger,et al.  Dynamic spanning without probabilities , 1994 .

[5]  M. Muresan A concrete approach to classical analysis , 2009 .

[6]  S. Varadhan,et al.  On the Support of Diffusion Processes with Applications to the Strong Maximum Principle , 1972 .

[7]  Hans Föllmer,et al.  Calcul d'ito sans probabilites , 1981 .

[8]  H. Sussmann On the Gap Between Deterministic and Stochastic Ordinary Differential Equations , 1978 .

[9]  Tommi Sottinen,et al.  Pricing by hedging and no-arbitrage beyond semimartingales , 2008, Finance Stochastics.

[10]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[11]  D. Freedman Brownian motion and diffusion , 1971 .

[12]  Alexander Schied,et al.  Pathwise no-arbitrage in a class of Delta hedging strategies , 2015, 1511.00026.

[13]  Bruno Dupire,et al.  Functional Itô Calculus , 2009 .

[14]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[15]  W. Rudin Principles of mathematical analysis , 1964 .

[16]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .

[17]  D. Sondermann Introduction to stochastic calculus for finance , 2006 .

[18]  Rama Cont,et al.  Change of variable formulas for non-anticipative functionals on path space ✩ , 2010, 1004.1380.

[19]  N. Touzi,et al.  Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II , 2012, 1210.0007.

[20]  Alexander Schied,et al.  On a class of generalized Takagi functions with linear pathwise quadratic variation , 2015, 1501.00837.

[21]  ORDINARY DIFFERENTIAL EQUATIONS WITH FRACTAL NOISE , 1999 .

[22]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[23]  Rama Cont,et al.  Functional Ito calculus and stochastic integral representation of martingales , 2010, 1002.2446.

[24]  Nizar Touzi,et al.  On viscosity solutions of path dependent PDEs , 2011, 1109.5971.

[25]  N. Gantert Self-similarity of Brownian motion and a large deviation principle for random fields on a binary tree , 1994 .

[26]  J. Groh A nonlinear Volterra-Stieltjes integral equation and a Gronwall inequality in one dimension , 1980 .

[27]  Vladimir Vovk,et al.  Continuous-time trading and the emergence of probability , 2009, Finance and Stochastics.

[28]  Jan Obłój,et al.  Arbitrage Bounds for Prices of Weighted Variance Swaps , 2010 .

[29]  Model-Free CPPI , 2013 .

[30]  G. Teschl Ordinary Differential Equations and Dynamical Systems , 2012 .

[31]  H. Engelbert,et al.  On solutions of one-dimensional stochastic differential equations without drift , 1985 .

[32]  T. Sideris Ordinary Differential Equations and Dynamical Systems , 2013 .

[33]  Hans Föllmer,et al.  Probabilistic aspects of financial risk , 2000 .