Uniform boundary stabilization of the finite difference space discretization of the 1−d wave equation
暂无分享,去创建一个
[1] Vilmos Komornik,et al. Rapid boundary stabilization of the wave equation , 1991 .
[2] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[3] David L. Russell,et al. Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping , 1977, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[4] R. Glowinski. Ensuring well-posedness by analogy; Stokes problem and boundary control for the wave equation , 1992 .
[5] Enrique Zuazua,et al. Exponential Decay for The Semilinear Wave Equation with Locally Distributed Damping , 1990 .
[6] Enrique Zuazua,et al. Boundary obeservability for the space semi-discretization for the 1-d wave equation , 1999 .
[7] H. Banks,et al. Exponentially stable approximations of weakly damped wave equations , 1991 .
[8] Enrique Zuazua,et al. Boundary observability for the space-discretizations of the 1 — d wave equation , 1998 .
[9] E. Zuazua,et al. Propagation, Observation, Control and Numerical Approximation of Waves , 2003 .
[10] V. Komornik. Exact Controllability and Stabilization: The Multiplier Method , 1995 .
[11] A. J. Hull,et al. A Closed Form Solution of a Longitudinal Bar With a Viscous Boundary Condition , 1994 .
[12] C. SIAMJ.. RAPID BOUNDARY STABILIZATION OF LINEAR DISTRIBUTED SYSTEMS , 1997 .
[13] 김정기,et al. Propagation , 1994, Encyclopedia of Evolutionary Psychological Science.
[14] Sorin Micu,et al. Uniform boundary controllability of a semi-discrete 1-D wave equation , 2002, Numerische Mathematik.
[15] E. Zuazua,et al. A direct method for boundary stabilization of the wave equation , 1990 .
[16] E. Wagner. International Series of Numerical Mathematics , 1963 .
[17] Well-posedness and energy decay estimates for the damped wave equation with lr localizing coefficient , 1998 .
[18] J. Lagnese. Decay of solutions of wave equations in a bounded region with boundary dissipation , 1983 .
[19] Enrique Zuazua,et al. Uniform boundary controllability of a discrete 1-D wave equation , 2003, Syst. Control. Lett..
[20] L. Trefethen. Group velocity in finite difference schemes , 1981 .
[21] H. Keller,et al. Analysis of Numerical Methods , 1969 .
[22] R. Glowinski,et al. A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods , 1990 .
[23] D. Russell. Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .
[24] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[25] Stabilization of the Wave Equation with Localized Nonlinear Damping , 1998 .
[26] Jacques-Louis Lions. Contrôlabilite exacte et homogénéisation (I) , 1988 .
[27] A. Haraux. Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps , 1989 .
[28] E. Boschi. Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .
[29] E. Zuazua,et al. Uniform stabilization of the wave equation by nonlinear boundary feedback , 1990 .
[30] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[31] Louis Roder Tcheugoué Tébou,et al. Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity , 2003, Numerische Mathematik.
[32] M. Tucsnak,et al. Uniformly exponentially stable approximations for a class of second order evolution equations , 2007 .
[33] L. Tébou. ON THE DECAY ESTIMATES FOR THE WAVE EQUATION WITH A LOCAL DEGENERATE OR NONDEGENERATE DISSIPATION , 2022 .
[34] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[35] E. Zuazua. Propagation of waves: numerical approximation and control , 2003 .
[36] C. Bardos,et al. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .
[37] Gerd Grubb,et al. PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .
[38] E. Zuazua. Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square , 1999 .