Uniform boundary stabilization of the finite difference space discretization of the 1−d wave equation

Abstract The energy of solutions of the wave equation with a suitable boundary dissipation decays exponentially to zero as time goes to infinity. We consider the finite-difference space semi-discretization scheme and we analyze whether the decay rate is independent of the mesh size. We focus on the one-dimensional case. First we show that the decay rate of the energy of the classical semi-discrete system in which the 1−d Laplacian is replaced by a three-point finite difference scheme is not uniform with respect to the net-spacing size h. Actually, the decay rate tends to zero as h goes to zero. Then we prove that adding a suitable vanishing numerical viscosity term leads to a uniform (with respect to the mesh size) exponential decay of the energy of solutions. This numerical viscosity term damps out the high frequency numerical spurious oscillations while the convergence of the scheme towards the original damped wave equation is kept. Our method of proof relies essentially on discrete multiplier techniques.

[1]  Vilmos Komornik,et al.  Rapid boundary stabilization of the wave equation , 1991 .

[2]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[3]  David L. Russell,et al.  Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping , 1977, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[4]  R. Glowinski Ensuring well-posedness by analogy; Stokes problem and boundary control for the wave equation , 1992 .

[5]  Enrique Zuazua,et al.  Exponential Decay for The Semilinear Wave Equation with Locally Distributed Damping , 1990 .

[6]  Enrique Zuazua,et al.  Boundary obeservability for the space semi-discretization for the 1-d wave equation , 1999 .

[7]  H. Banks,et al.  Exponentially stable approximations of weakly damped wave equations , 1991 .

[8]  Enrique Zuazua,et al.  Boundary observability for the space-discretizations of the 1 — d wave equation , 1998 .

[9]  E. Zuazua,et al.  Propagation, Observation, Control and Numerical Approximation of Waves , 2003 .

[10]  V. Komornik Exact Controllability and Stabilization: The Multiplier Method , 1995 .

[11]  A. J. Hull,et al.  A Closed Form Solution of a Longitudinal Bar With a Viscous Boundary Condition , 1994 .

[12]  C. SIAMJ. RAPID BOUNDARY STABILIZATION OF LINEAR DISTRIBUTED SYSTEMS , 1997 .

[13]  김정기,et al.  Propagation , 1994, Encyclopedia of Evolutionary Psychological Science.

[14]  Sorin Micu,et al.  Uniform boundary controllability of a semi-discrete 1-D wave equation , 2002, Numerische Mathematik.

[15]  E. Zuazua,et al.  A direct method for boundary stabilization of the wave equation , 1990 .

[16]  E. Wagner International Series of Numerical Mathematics , 1963 .

[17]  Well-posedness and energy decay estimates for the damped wave equation with lr localizing coefficient , 1998 .

[18]  J. Lagnese Decay of solutions of wave equations in a bounded region with boundary dissipation , 1983 .

[19]  Enrique Zuazua,et al.  Uniform boundary controllability of a discrete 1-D wave equation , 2003, Syst. Control. Lett..

[20]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[21]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[22]  R. Glowinski,et al.  A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods , 1990 .

[23]  D. Russell Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .

[24]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[25]  Stabilization of the Wave Equation with Localized Nonlinear Damping , 1998 .

[26]  Jacques-Louis Lions Contrôlabilite exacte et homogénéisation (I) , 1988 .

[27]  A. Haraux Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps , 1989 .

[28]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[29]  E. Zuazua,et al.  Uniform stabilization of the wave equation by nonlinear boundary feedback , 1990 .

[30]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[31]  Louis Roder Tcheugoué Tébou,et al.  Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity , 2003, Numerische Mathematik.

[32]  M. Tucsnak,et al.  Uniformly exponentially stable approximations for a class of second order evolution equations , 2007 .

[33]  L. Tébou ON THE DECAY ESTIMATES FOR THE WAVE EQUATION WITH A LOCAL DEGENERATE OR NONDEGENERATE DISSIPATION , 2022 .

[34]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[35]  E. Zuazua Propagation of waves: numerical approximation and control , 2003 .

[36]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[37]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[38]  E. Zuazua Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square , 1999 .