The VMC survey – XXV. The 3D structure of the Small Magellanic Cloud from Classical Cepheids

The "VISTA near-infrared YJKs survey of the Magellanic System" (VMC) is collecting deep Ks-band time-series photometry of pulsating stars hosted by the two Magellanic Clouds and their connecting Bridge. Here we present YJKs light curves for a sample of 717 Small Magellanic Cloud (SMC) Classical Cepheids (CCs). These data, complemented with our previous results and V magnitude from literature, allowed us to construct a variety of period-luminosity and period-Wesenheit relationships, valid for Fundamental, First and Second Overtone pulsators. These relations provide accurate individual distances to CCs in the SMC over an area of more than 40 sq. deg. Adopting literature relations, we estimated ages and metallicities for the majority of the investigated pulsators, finding that: i) the age distribution is bimodal, with two peaks at 120+-10 and 220+-10 Myr; ii) the more metal-rich CCs appear to be located closer to the centre of the galaxy. Our results show that the three-dimensional distribution of the CCs in the SMC, is not planar but heavily elongated for more than 25-30 kpc approximately in the east/north-east towards south-west direction. The young and old CCs in the SMC show a different geometric distribution. Our data support the current theoretical scenario predicting a close encounter or a direct collision between the Clouds some 200 Myr ago and confirm the presence of a Counter-Bridge predicted by some models. The high precision three-dimensional distribution of young stars presented in this paper provides a new testbed for future models exploring the formation and evolution of the Magellanic System.

[1]  P. Fosalba,et al.  A stellar overdensity associated with the Small Magellanic Cloud , 2017 .

[2]  L. Girardi,et al.  The VMC Survey - XXIV. Signatures of tidally stripped stellar populations from the inner Small Magellanic Cloud , 2017, 1701.05722.

[3]  M. Moretti,et al.  The VMC survey – XXIII. Model fitting of light and radial velocity curves of Small Magellanic Cloud classical Cepheids , 2016, 1612.04650.

[4]  Sergey E. Koposov,et al.  Clouds, Streams and Bridges: redrawing the blueprint of the Magellanic System with Gaia DR1 , 2016, 1611.04614.

[5]  S. Majewski,et al.  SMASH 1: A VERY FAINT GLOBULAR CLUSTER DISRUPTING IN THE OUTER REACHES OF THE LMC? , 2016, 1609.05918.

[6]  J. Sahlmann,et al.  FIRST GAIA LOCAL GROUP DYNAMICS: MAGELLANIC CLOUDS PROPER MOTION AND ROTATION , 2016, 1609.04395.

[7]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[8]  G. Fiorentino,et al.  THE PANCHROMATIC VIEW OF THE MAGELLANIC CLOUDS FROM CLASSICAL CEPHEIDS. I. DISTANCE, REDDENING, AND GEOMETRY OF THE LARGE MAGELLANIC CLOUD DISK , 2016, 1609.03554.

[9]  D. Nidever,et al.  AN ULTRA-FAINT GALAXY CANDIDATE DISCOVERED IN EARLY DATA FROM THE MAGELLANIC SATELLITES SURVEY , 2016, 1609.02148.

[10]  C. Frenk,et al.  Identifying true satellites of the Magellanic Clouds. , 2016, 1605.03574.

[11]  V. Belokurov,et al.  A Magellanic origin of the DES dwarfs , 2016, 1603.04420.

[12]  M. Moretti,et al.  THE VMC SURVEY. XIX. CLASSICAL CEPHEIDS IN THE SMALL MAGELLANIC CLOUD , 2016, 1602.09005.

[13]  E. D’Onghia,et al.  The Magellanic Stream: Circumnavigating the Galaxy , 2015, 1511.05853.

[14]  M. Moretti,et al.  The VMC survey – XX. Identification of new Cepheids in the Small Magellanic Cloud , 2015, 1510.08522.

[15]  Joana M. Oliveira,et al.  The VMC survey: XVII. Proper motions of the Small Magellanic Cloud and the Milky Way globular cluster 47 Tucanae , 2015, 1510.07647.

[16]  H. Rix,et al.  The MAGellanic Inter-Cloud (MAGIC) project – II. Slicing up the Bridge , 2015 .

[17]  France,et al.  THE MAGELLANIC STREAM SYSTEM. I. RAM-PRESSURE TAILS AND THE RELICS OF THE COLLISION BETWEEN THE MAGELLANIC CLOUDS , 2015, 1510.00096.

[18]  B. Yanny,et al.  EIGHT ULTRA-FAINT GALAXY CANDIDATES DISCOVERED IN YEAR TWO OF THE DARK ENERGY SURVEY , 2015, 1508.03622.

[19]  Sergey E. Koposov,et al.  A 10 kpc stellar substructure at the edge of the Large Magellanic Cloud: Perturbed outer disc or evidence for tidal stripping? , 2015, 1508.01356.

[20]  Tatiana Muraveva,et al.  NEW NEAR-INFRARED PERIOD–LUMINOSITY–METALLICITY RELATIONS FOR RR LYRAE STARS AND THE OUTLOOK FOR GAIA , 2015, 1505.06001.

[21]  A. Pietrinferni,et al.  ON A NEW THEORETICAL FRAMEWORK FOR RR LYRAE STARS. I. THE METALLICITY DEPENDENCE , 2015, 1505.02531.

[22]  V. Belokurov,et al.  Satellites of LMC-mass dwarfs: close friendships ruined by Milky Way mass haloes , 2015, 1504.04372.

[23]  Sergey E. Koposov,et al.  BEASTS OF THE SOUTHERN WILD: DISCOVERY OF NINE ULTRA FAINT SATELLITES IN THE VICINITY OF THE MAGELLANIC CLOUDS , 2015, 1503.02079.

[24]  S. E. Persson,et al.  THE CARNEGIE HUBBLE PROGRAM: THE DISTANCE AND STRUCTURE OF THE SMC AS REVEALED BY MID-INFRARED OBSERVATIONS OF CEPHEIDS , 2015, 1502.06995.

[25]  Harinder P. Singh,et al.  Morphology and metallicity of the Small Magellanic Cloud using RRab stars , 2015, 1502.05824.

[26]  L. Girardi,et al.  The VMC survey - XIV. First results on the look-back time star formation rate tomography of the Small Magellanic Cloud , 2015, 1501.05347.

[27]  R. de Grijs,et al.  The VMC Survey - XIII : Type II Cepheids in the Large Magellanic Cloud , 2014, 1410.7817.

[28]  A. Subramaniam,et al.  Disk of the Small Magellanic Cloud as traced by Cepheids , 2014, 1410.7588.

[29]  M. Moretti,et al.  Eclipsing binary stars in the Large Magellanic Cloud. Results from the EROS-2, OGLE and VMC surveys ⋆ , 2014, 1406.2494.

[30]  A. Subramaniam,et al.  Red giants in the Small Magellanic Cloud – I. Disc and tidal stream kinematics , 2014, 1405.3705.

[31]  P. Schipani,et al.  STEP: The VST survey of the SMC and the Magellanic Bridge. I. Overview and first results , 2014, 1405.1028.

[32]  Richard de Grijs,et al.  CLUSTERING OF LOCAL GROUP DISTANCES: PUBLICATION BIAS OR CORRELATED MEASUREMENTS? III. THE SMALL MAGELLANIC CLOUD , 2014, 1504.00417.

[33]  J. B. Marquette,et al.  The VMC Survey - X. Cepheids, RR Lyrae stars and binaries as probes of the Magellanic System's structure ⋆ , 2013, 1310.6849.

[34]  M. Moretti,et al.  The VMC survey - VIII : First results for anomalous Cepheids , 2013, 1310.5967.

[35]  R. Beaton,et al.  A TIDALLY STRIPPED STELLAR COMPONENT OF THE MAGELLANIC BRIDGE , 2013, 1310.4824.

[36]  B. Jiang,et al.  THE MID-INFRARED EXTINCTION LAW IN THE LARGE MAGELLANIC CLOUD , 2013, 1308.1474.

[37]  N. Mowlavi,et al.  Determination of the iron content of Cepheids from the shape of their light curves , 2013, 1307.8275.

[38]  B. Sesar,et al.  METAL ABUNDANCES, RADIAL VELOCITIES, AND OTHER PHYSICAL CHARACTERISTICS FOR THE RR LYRAE STARS IN THE KEPLER FIELD , 2013, 1307.5820.

[39]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[40]  C. Alcock,et al.  THIRD-EPOCH MAGELLANIC CLOUD PROPER MOTIONS. I. HUBBLE SPACE TELESCOPE/WFC3 DATA AND ORBIT IMPLICATIONS , 2013, 1301.0832.

[41]  Keith T. Noddle,et al.  The VISTA Science Archive , 2012, 1210.2980.

[42]  D. Geisler,et al.  THE AGE–METALLICITY RELATIONSHIP OF THE LARGE MAGELLANIC CLOUD FIELD STAR POPULATION FROM WIDE-FIELD WASHINGTON PHOTOMETRY , 2012, 1208.3899.

[43]  E. Grebel,et al.  THREE-DIMENSIONAL MAPS OF THE MAGELLANIC CLOUDS USING RR LYRAE STARS AND CEPHEIDS. II. THE SMALL MAGELLANIC CLOUD , 2012, 1207.5791.

[44]  J. B. Marquette,et al.  The VMC survey - V. First results for classical Cepheids , 2012, 1204.2273.

[45]  J. B. Marquette,et al.  Preliminary results for RR Lyrae stars and Classical Cepheids from the Vista Magellanic Cloud (VMC) survey , 2012, 1202.5863.

[46]  L. Hernquist,et al.  The role of dwarf galaxy interactions in shaping the Magellanic System and implications for Magellanic Irregulars , 2012, 1201.1299.

[47]  K. Bekki,et al.  THE TIDAL ORIGIN OF THE MAGELLANIC STREAM AND THE POSSIBILITY OF A STELLAR COUNTERPART , 2011, 1112.6191.

[48]  A. Subramaniam,et al.  THE THREE-DIMENSIONAL STRUCTURE OF THE SMALL MAGELLANIC CLOUD , 2011, 1109.3980.

[49]  K. Kinemuchi,et al.  Fourier analysis of non-Blazhko ab-type RR Lyrae stars observed with the Kepler space telescope , 2011 .

[50]  E. Grebel,et al.  NEW OPTICAL REDDENING MAPS OF THE LARGE AND SMALL MAGELLANIC CLOUDS , 2011, 1104.2325.

[51]  M. Marconi,et al.  INSIGHTS INTO THE CEPHEID DISTANCE SCALE , 2010, 1004.0363.

[52]  D. Zaritsky,et al.  THE STAR FORMATION HISTORY OF THE LARGE MAGELLANIC CLOUD , 2009, 0908.1422.

[53]  L. Girardi,et al.  Recovery of the star formation history of the LMC from the VISTA survey of the Magellanic system , 2009, 0901.4131.

[54]  Heidelberg,et al.  Structure of the SMC - Stellar component distribution from 2MASS data , 2008, 0812.0880.

[55]  E. Grebel,et al.  Accepted Version Preprint typeset using L ATEX style emulateapj v. 10/09/06 AGE DETERMINATION OF SIX INTERMEDIATE-AGE SMC STAR CLUSTERS WITH HST/ACS * , 2022 .

[56]  C. D. Laney,et al.  The influence of chemical composition on the properties of Cepheid stars. II - The iron content ⋆ , 2008, 0807.1196.

[57]  K. Bekki,et al.  Formation of the Small Magellanic Cloud: An Ancient Major Merger as a Solution to the Kinematical Differences between Old Stars and H I Gas , 2008, 0804.4563.

[58]  C. Evans,et al.  Kinematics of massive stars in the Small Magellanic Cloud , 2008, 0801.3460.

[59]  W. B. Burton,et al.  The Origin of the Magellanic Stream and Its Leading Arm , 2007, 0706.1578.

[60]  B. Robertson,et al.  Are the Magellanic Clouds on Their First Passage about the Milky Way? , 2007, astro-ph/0703196.

[61]  J. Harris The Magellanic Bridge: The Nearest Purely Tidal Stellar Population , 2006, astro-ph/0612107.

[62]  J. Beaulieu,et al.  Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds , 2006, astro-ph/0607207.

[63]  D. Zaritsky,et al.  Spectroscopic Survey of Red Giants in the Small Magellanic Cloud. I. Kinematics , 2006, astro-ph/0601025.

[64]  M. Marconi,et al.  Classical Cepheid Pulsation Models. X. The Period-Age Relation , 2004, astro-ph/0411756.

[65]  James P. Emerson,et al.  VISTA data flow system: overview , 2004, SPIE Astronomical Telescopes + Instrumentation.

[66]  James P. Emerson,et al.  VISTA data flow system: pipeline processing for WFCAM and VISTA , 2004, SPIE Astronomical Telescopes + Instrumentation.

[67]  L. Staveley-Smith,et al.  A New Look at the Kinematics of Neutral Hydrogen in the Small Magellanic Cloud , 2003, astro-ph/0312223.

[68]  D. Zaritsky,et al.  The Star Formation History of the Small Magellanic Cloud , 2003, astro-ph/0312100.

[69]  A. Yoshizawa,et al.  The dynamical evolution and star formation history of the Small Magellanic Cloud: effects of interactions with the Galaxy and the Large Magellanic Cloud , 2003 .

[70]  A. Dapergolas,et al.  The recent structural evolution of the SMC , 2001 .

[71]  M. Cioni,et al.  Magellanic Cloud Structure from Near-Infrared Surveys. I. The Viewing Angles of the Large Magellanic Cloud , 2001, astro-ph/0105339.

[72]  M. Weinberg,et al.  Structure of the Large Magellanic Cloud from 2MASS , 2000, astro-ph/0003204.

[73]  E. Grebel,et al.  The Morphologies of the Small Magellanic Cloud , 2000, The Astrophysical journal.

[74]  M. Marconi,et al.  Theoretical Models for Classical Cepheids. II. Period-Luminosity, Period-Color, and Period-Luminosity-Color Relations , 1998, astro-ph/9809127.

[75]  B. Gibson,et al.  Tidal disruption of the Magellanic Clouds by the Milky Way , 1998, Nature.

[76]  B. Gibson,et al.  The disruption of nearby galaxies by the Milky Way , 1998, astro-ph/9808023.

[77]  L. Gardiner,et al.  N-body Simulations of the Small Magellanic Cloud and the Magellanic Stream , 1995, astro-ph/9503095.

[78]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[79]  B. Madore,et al.  Distance Moduli and Structure of the Magellanic Clouds from Near-Infrared Photometry of Classical Cepheids , 1987 .

[80]  M. Irwin,et al.  A blue stellar population in the HI bridge between the two Magellanic Clouds , 1985, Nature.

[81]  J. Caldwell,et al.  The geometry and distance of the Magellanic Clouds from Cepheid variables , 1986 .