Novel rattling of K atoms in aluminium-doped defect pyrochlore tungstate

Rattling dynamics have been identified as fundamental to superconductivity in defect pyrochlore osmates and aluminium vanadium intermetallics, as well as low thermal conductivity in clathrates and filled skutterudites. Combining inelastic neutron scattering (INS) measurements and ab initio molecular dynamics (MD) simulations, we use a new approach to investigate rattling in the Al-doped defect pyrochlore tungstates: AAl0.33W1.67O6 (A = K, Rb, Cs). We find that although all the alkali metals rattle, the rattling of the K atoms is unique, not only among the tungstates but also among the analogous defect osmates, KOs2O6 and RbOs2O6. Detailed analysis of the MD trajectories reveals that two unique features set the K dynamics apart from the rest, namely, (1) quasi one-dimensional local diffusion within a cage, and (2) vibration at a range of frequencies. The local diffusion is driven by strongly anharmonic local potentials around the K atoms exhibiting a double-well structure in the direction of maximum displacement, which is also the direction of local diffusion. On the other hand, vibration at a range of frequencies is a consequence of the strong anisotropy in the local potentials around the K atoms as revealed by directional magnitude spectra. We present evidence to show that it is the smaller size rather than the smaller mass of the K rattler which leads to the unusual dynamics. Finally, we suggest that the occurrence of local diffusion and vibration at a range of frequencies in the dynamics of a single rattler, as found here for the K atoms, may open new possibilities for phonon engineering in thermoelectric materials.

[1]  V. K. Peterson,et al.  Novel K rattling: A new route to thermoelectric materials? , 2013, 1310.8382.

[2]  G. Kearley,et al.  Temperature dependence of alkali-metal rattling dynamics in the β-pyrochlores, AOs2O6 (A = K, Rb, Cs), from MD simulation , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Zhu-An Xu,et al.  Crystal chemistry and structural design of iron-based superconductors , 2013, 1605.04179.

[4]  N. Dilley,et al.  Localized Anharmonic Rattling of Al Atoms in VAl10.1 , 2012 .

[5]  Y. Okamoto,et al.  Superconductivity in an Einstein Solid AxV2Al20 (A = Al and Ga) , 2011, 1112.5229.

[6]  Mark R. Johnson,et al.  Vibrational dynamics of the filled skutterudites M1−xFe4Sb12 (M=Ca, Sr, Ba, and Yb): Temperature response, dispersion relation, and material properties , 2011 .

[7]  T. Hotta,et al.  Strong-Coupling Theory of Rattling-Induced Superconductivity , 2011, 1105.3811.

[8]  Lidong Chen,et al.  Lattice thermal transport in BaxREyCo4Sb12 (RE=Ce, Yb, and Eu) double-filled skutterudites , 2010 .

[9]  Y. Ono,et al.  First Order Bipolaronic Transition at Finite Temperature in the Holstein Model , 2010, 1005.0257.

[10]  M. Takigawa,et al.  Isomorphic Structural Transition in the β-Pyrochlore Oxide Superconductor KOs2O6 , 2010 .

[11]  K. Hattori,et al.  Strong coupling superconductivity mediated by three-dimensional anharmonic phonons , 2010, 1003.2709.

[12]  K. Hirota,et al.  A novel isomorphic phase transition in β-pyrochlore oxide KOs2O6: a study using high resolution neutron powder diffraction , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[14]  P. Thalmeier,et al.  Cooper-pair formation by anharmonic rattling modes in the β-pyrochlore superconductor KOs2O6 , 2009 .

[15]  G. Kearley,et al.  Anomalous lattice parameter increase in alkali earth aluminium substituted tungsten defect pyrochlores , 2009 .

[16]  Hannu Mutka,et al.  Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. , 2008, Nature materials.

[17]  Mark R. Johnson,et al.  Generalized density-of-states and anharmonicity of the low-energy phonon bands from coherent inelastic neutron scattering response in the pyrochlore osmates A Os 2 O 6 ( A = K , Rb , Cs ) , 2008 .

[18]  M. Weller,et al.  Cation displacements and the structures of the superconducting pyrochlore osmates AOs(2)O(6) (A = K, Rb, and Cs) , 2008 .

[19]  Takumi Hasegawa,et al.  Raman scattering in K Os 2 O 6 , 2008 .

[20]  T. Togashi,et al.  Interplay of superconductivity and rattling phenomena in beta-pyrochlore KOs2O6 studied by photoemission spectroscopy. , 2007, Physical review letters.

[21]  K. Hirota,et al.  Neutron-Scattering Study of the Localized Mode in β-Pyrochlore Superconductors AOs2O6 , 2007, 0707.1366.

[22]  K. Ueda,et al.  NMR relaxation and resistivity from rattling phonons in pyrochlore superconductors. , 2007, Physical review letters.

[23]  K. Hashimoto,et al.  effects of rattling phonons on the dynamics of quasiparticle excitation in the beta-pyrochlore KOs(2)O(6) Superconductor. , 2007, Physical review letters.

[24]  W. Pickett,et al.  Effective Hamiltonian for potassium dynamics in the β ‐pyrochlore superconductor KOs2O6 , 2006 .

[25]  W. Pickett,et al.  Frustration in the coupled rattler system KOs 2 O 6 , 2006, cond-mat/0604074.

[26]  Z. Hiroi,et al.  Crystal structure of the pyrochlore oxide superconductor KOs2O6 , 2005, cond-mat/0512683.

[27]  Y. Matsushita,et al.  Erratum to Three Papers on the β-Pyrochlore Oxide Superconductors , 2005, cond-mat/0510369.

[28]  O. Leupold,et al.  Strongly decoupled europium and iron vibrational modes in filled skutterudites , 2005 .

[29]  Z. Hiroi,et al.  Specific Heat of the β-Pyrochlore Oxide Superconductors CsOs2O6and RbOs2O6 , 2005, cond-mat/0501736.

[30]  W. Pickett,et al.  Correlation effects and structural dynamics in the β -pyrochlore superconductor K Os 2 O 6 , 2004, cond-mat/0412031.

[31]  Eric F Darve,et al.  Calculating free energies using average force , 2001 .

[32]  R. Hempelmann Incoherent quasielastic neutron scattering , 2000 .

[33]  R. Hempelmann Quasielastic Neutron Scattering and Solid State Diffusion , 2000 .

[34]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[35]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[36]  E. J. Freeman,et al.  Localized vibrational modes in metallic solids , 1998, Nature.

[37]  B. Sales,et al.  FILLED SKUTTERUDITE ANTIMONIDES : ELECTRON CRYSTALS AND PHONON GLASSES , 1997 .

[38]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[41]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[42]  Konrad Hinsen,et al.  nMOLDYN: A program package for a neutron scattering oriented analysis of Molecular Dynamics simulations , 1995 .

[43]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[44]  G. A. Slack,et al.  Some properties of semiconducting IrSb3 , 1994 .

[45]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[46]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[47]  Matthias Durr,et al.  Molecular Dynamics Simulation Elementary Methods , 2016 .

[48]  Y. Ohishi,et al.  Re-examination of the crystal structure of the β-pyrochlore oxide superconductor KOs2O6 by X-ray and convergent-beam electron diffraction analyses , 2009 .

[49]  L. Nicholson,et al.  The strange case of Al10V: well defined local modes in a metallic solid , 1978 .

[50]  A. W. Pryor,et al.  Thermal vibrations in crystallography , 1975 .