Poincaré Map-Based Design

In this chapter, Poincare maps were used, to the best knowledge of the authors, for the first time as a design tool: to find controller parameters that provide the desired amplitude and frequency of the periodic motion of in systems having nonlinear plants, through the use of the TRC . We present application to an underactuated mechanical system via generating a self-excited oscillation of a desired amplitude and frequency of the unactuated position variable. Poincare map design provides values of the TRC parameters and ensures local orbital stability of the periodic motions, for an arbitrary mechanical plant. The proposed approach is illustrated by the controller design for and experiments on the inertia wheel pendulum.

[1]  Tryphon T. Georgiou,et al.  Dynamics of relay relaxation oscillators , 2001, IEEE Trans. Autom. Control..

[2]  David G. Wilson,et al.  What is a limit cycle? , 2008, Int. J. Control.

[3]  Igor Boiko,et al.  Analysis of Closed-Loop Performance and Frequency-Domain Design of Compensating Filters for Sliding Mode Control Systems , 2007, IEEE Transactions on Automatic Control.

[4]  Leonid Fridman,et al.  Slow periodic motions with internal sliding modes in variable structure systems , 2002 .

[5]  Yury Orlov,et al.  Asymptotic harmonic generator and its application to finite time orbital stabilization of a friction pendulum with experimental verification , 2008, Int. J. Control.

[6]  Ian R. Manchester,et al.  Can we make a robot ballerina perform a pirouette? Orbital stabilization of periodic motions of underactuated mechanical systems , 2008, Annu. Rev. Control..

[7]  Alexander L. Fradkov,et al.  Introduction to Control of Oscillations and Chaos , 1998 .

[8]  Arthur Gelb,et al.  Multiple-Input Describing Functions and Nonlinear System Design , 1968 .

[9]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[10]  Jay C. Hsu,et al.  Modern Control Principles and Applications , 1968 .

[11]  A S Iberall,et al.  Oscillations in biological systems. , 1970, Currents in modern biology.

[12]  Jih-Sheng Lai,et al.  Power conditioning circuit topologies , 2009, IEEE Industrial Electronics Magazine.

[13]  Bernard Brogliato,et al.  Modeling, stability and control of biped robots - a general framework , 2004, Autom..

[14]  Christopher Edwards,et al.  Sliding Mode Control and Observation , 2013 .

[15]  V. K. Astashev,et al.  Thermomechanical model of cutter self-oscillation in perpendicular free cutting , 2012 .

[16]  Ron Mancini,et al.  Op amps for everyone : design reference , 2003 .

[17]  Ronald S. Fearing,et al.  Tracking fast inverted trajectories of the underactuated Acrobot , 1999, IEEE Trans. Robotics Autom..

[18]  Leonid M. Fridman,et al.  Analysis of second-order sliding-mode algorithms in the frequency domain , 2004, IEEE Transactions on Automatic Control.

[19]  L. Loron,et al.  An Efficient Switching Frequency Limitation Process Applied to a High Dynamic Voltage Supply , 2008, IEEE Transactions on Power Electronics.

[20]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[21]  Rogelio Lozano,et al.  Non-linear Control for Underactuated Mechanical Systems , 2001 .

[22]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[23]  Carlos Canudas-de-Wit,et al.  Adaptive Control of the Boost DC-AC Converter , 2007, 2007 IEEE International Conference on Control Applications.

[24]  Carlos Canudas-de-Wit,et al.  Adaptive control design for a boost inverter , 2011 .

[25]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[26]  Kimon P. Valavanis,et al.  Linear Tracking Control for Small-Scale Unmanned Helicopters , 2012, IEEE Transactions on Control Systems Technology.

[27]  A. Isidori Nonlinear Control Systems , 1985 .

[28]  Yu. A. Romanov,et al.  Self-oscillations in semiconductor superlattices , 2000 .

[29]  Arie Levant,et al.  Quasi-continuous high-order sliding-mode controllers , 2005, IEEE Transactions on Automatic Control.

[30]  Daniel R. Koenig,et al.  Voltage-sustained self-oscillation of a nano-mechanical electron shuttle , 2012, 1207.4313.

[31]  Leonid M. Fridman,et al.  High order sliding mode observer for linear systems with unbounded unknown inputs , 2010, Int. J. Control.

[32]  Kaustubh Pathak,et al.  Approaches for a tether-guided landing of an autonomous helicopter , 2006, IEEE Transactions on Robotics.

[33]  O. R. Fendrich Describing functions and limit cycles , 1992 .

[34]  Krishna Busawon,et al.  Analysis and Control of Underactuated Mechanical Systems , 2013 .

[35]  Antonio Rosales,et al.  Robust regulation for a 3-DOF helicopter via sliding-mode observation and identification , 2012, J. Frankl. Inst..

[36]  T. Floquet,et al.  Stabilization of the cart-pendulum system via quasi-homogeneous switched control , 2006, International Workshop on Variable Structure Systems, 2006. VSS'06..

[37]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[38]  I︠a︡. Z. T︠S︡ypkin Relay Control Systems , 1985 .

[39]  Hong-Tae Jeon,et al.  On the linearization via a restricted class of dynamic feedback , 2000, IEEE Trans. Autom. Control..

[40]  Yisheng Zhong,et al.  Robust Attitude Regulation of a 3-DOF Helicopter Benchmark: Theory and Experiments , 2011, IEEE Transactions on Industrial Electronics.

[41]  Y. Hara,et al.  Activation Energy of Aggregation-Disaggregation Self-Oscillation of Polymer Chain , 2012, International journal of molecular sciences.

[42]  Leonid M. Fridman,et al.  Analysis of chattering in continuous sliding-mode controllers , 2005, IEEE Transactions on Automatic Control.

[43]  Anthony T. Lin,et al.  PENIOTRON FORWARD WAVE SELF-OSCILLATIONS , 1994 .

[44]  Arie Levant,et al.  Chattering Analysis , 2007, IEEE Transactions on Automatic Control.

[45]  Leonid M. Fridman,et al.  Generating Self-Excited Oscillations via Two-Relay Controller , 2009, IEEE Transactions on Automatic Control.

[46]  Harry L. Trentelman,et al.  Control theory for linear systems , 2002 .

[47]  A. V. Melkikh,et al.  Self-oscillations in oscillating heat pipes , 2006 .

[48]  Thierry Floquet,et al.  Second‐order sliding mode control of underactuated mechanical systems II: Orbital stabilization of an inverted pendulum with application to swing up/balancing control , 2008 .

[49]  Irving R. Epstein Nonlinear oscillations in chemical and biological systems , 1991 .

[50]  M. Rabinovich,et al.  Self-oscillations of distributed systems , 1974 .

[51]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[52]  Kirsten Morris,et al.  Invariant zeros of SISO infinite-dimensional systems , 2010, Int. J. Control.

[53]  B. Molinari A strong controllability and observability in linear multivariable control , 1976 .

[54]  Karl Johan Åström,et al.  The Reaction Wheel Pendulum , 2007, The Reaction Wheel Pendulum.

[55]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[56]  E. Gubia,et al.  Buck-boost DC-AC inverter: proposal for a new control strategy , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[57]  Alex K Zettl,et al.  Sustained mechanical self-oscillations in carbon nanotubes. , 2010, Nano letters.

[58]  Leonid M. Fridman,et al.  Quasi-continuous HOSM control for systems with unmatched perturbations , 2008, 2008 International Workshop on Variable Structure Systems.

[59]  R.-L. Lin,et al.  A novel self-oscillating, boost-derived DC-DC converter with load regulation , 2005, IEEE Transactions on Power Electronics.

[60]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[61]  Yury Orlov,et al.  Motion planning and control of a simplified helicopter model based on virtual holonomic constraints , 2009, 2009 International Conference on Advanced Robotics.

[62]  Yury Orlov,et al.  Periodic motion planning and nonlinear ℋ∞ tracking control of a 3-DOF underactuated helicopter , 2011, Int. J. Syst. Sci..

[63]  Leonid M. Fridman,et al.  Exact compensation of unmatched perturbation via quasi-continuous HOSM , 2008, 2008 47th IEEE Conference on Decision and Control.

[64]  M.Z. Youssef,et al.  A Novel Single Stage AC–DC Self-Oscillating Series-Parallel Resonant Converter , 2005, IEEE Transactions on Power Electronics.

[65]  Franck Plestan,et al.  Stable walking of a 7-DOF biped robot , 2003, IEEE Trans. Robotics Autom..

[66]  Carlos Canudas-de-Wit,et al.  Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach , 2005, IEEE Transactions on Automatic Control.

[67]  Leonid B. Freidovich,et al.  Virtual-Holonomic-Constraints-Based Design of Stable Oscillations of Furuta Pendulum: Theory and Experiments , 2007, IEEE Transactions on Robotics.

[68]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[69]  Leonid M. Fridman Slow periodic motions in variable structure systems , 2002, Int. J. Syst. Sci..

[70]  R. O. Caceres,et al.  A boost DC-AC converter: analysis, design, and experimentation , 1999 .

[71]  Rafael Kelly,et al.  A measurement procedure for viscous and coulomb friction , 2000, IEEE Trans. Instrum. Meas..

[72]  Leonid M. Fridman,et al.  Analysis of Chattering in Systems With Second-Order Sliding Modes , 2007, IEEE Transactions on Automatic Control.

[73]  Suguru Arimoto,et al.  Control Theory of Nonlinear Mechanical Systems , 1996 .

[74]  Leonid M. Fridman,et al.  Robust Control With Exact Uncertainties Compensation: With or Without Chattering? , 2011, IEEE Transactions on Control Systems Technology.

[75]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .

[76]  Leonid M. Fridman,et al.  An averaging approach to chattering , 2001, IEEE Trans. Autom. Control..

[77]  Igor Boiko,et al.  Oscillations and transfer properties of relay servo systems - the locus of a perturbed relay system approach , 2005, Autom..

[78]  H. Valderrama-Blavi,et al.  Self-oscillating DC-to-DC switching converters with transformer characteristics , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[79]  Christine Chevallereau,et al.  Nonlinear control of mechanical systems with an unactuated cyclic variable , 2005, IEEE Transactions on Automatic Control.

[80]  I. Boiko,et al.  Frequency domain analysis of second order sliding modes , 2006, 2006 American Control Conference.

[81]  Claudio Urrea,et al.  ORBITAL STABILIZATION OF UNDERACTUATED MECHANICAL SYSTEMS , 2002 .

[82]  Leonid B. Freidovich,et al.  Transverse Linearization for Controlled Mechanical Systems With Several Passive Degrees of Freedom , 2010, IEEE Transactions on Automatic Control.

[83]  E. Gubia,et al.  Boost DC-AC inverter: a new control strategy , 2005, IEEE Transactions on Power Electronics.

[84]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..