Graphs with few P4's under the convexity of paths of order three

A graph is ( q , q - 4 ) if every subset of at most q vertices induces at most q - 4 P 4 's. It therefore generalizes some different classes, as cographs and P 4 -sparse graphs. In this work, we propose algorithms for determining various NP-Hard graph convexity parameters within the convexity of paths of order three, for ( q , q - 4 ) graphs. All algorithms have linear-time complexity, for fixed q , and then are fixed parameter tractable. Moreover, we prove that the Caratheodory number is at most three for every cograph, P 4 -sparse graph and every connected ( q , q - 4 ) -graph with at least q vertices.

[1]  Rudini Menezes Sampaio,et al.  Maximization coloring problems on graphs with few P4 , 2014, Discret. Appl. Math..

[2]  Simone Dantas,et al.  Convex Partitions of Graphs induced by Paths of Order Three , 2010, Discret. Math. Theor. Comput. Sci..

[3]  Sulamita Klein,et al.  Recognizing Well Covered Graphs of Families with Special P4-Components , 2013, Graphs Comb..

[4]  Michael R. Fellows,et al.  Fixed-parameter intractability , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[5]  Jayme Luiz Szwarcfiter,et al.  Irreversible conversion of graphs , 2011, Theor. Comput. Sci..

[6]  E. C. Milner,et al.  Some remarks on simple tournaments , 1972 .

[7]  Sui Huang Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery , 1999, Journal of Molecular Medicine.

[8]  Michael R. Fellows,et al.  Fixed-parameter tractability and completeness III: some structural aspects of the W hierarchy , 1993 .

[9]  Manoj Changat,et al.  On triangle path convexity in graphs , 1999, Discret. Math..

[10]  Stephan Olariu,et al.  Efficient algorithms for graphs with few P4's , 2001, Discret. Math..

[11]  Eric Goles Ch.,et al.  Comportement periodique des fonctions a seuil binaires et applications , 1981, Discret. Appl. Math..

[12]  Jayme Luiz Szwarcfiter,et al.  On the Radon Number for P 3-Convexity , 2012, LATIN.

[13]  Marty J. Wolf,et al.  On two-path convexity in multipartite tournaments , 2008, Eur. J. Comb..

[14]  Jayme Luiz Szwarcfiter,et al.  On the Convexity of Paths of Length Two in Undirected Graphs , 2009, Electron. Notes Discret. Math..

[15]  Dimitrios M. Thilikos,et al.  Confronting intractability via parameters , 2011, Comput. Sci. Rev..

[16]  Stephan Olariu,et al.  Domination and Steiner Tree Problems on Graphs with Few P4S , 1998, WG.

[17]  Andreas Brandstädt,et al.  Split-Perfect Graphs: Characterizations and Algorithmic Use , 2004, SIAM J. Discret. Math..

[18]  Svatopluk Poljak,et al.  On periodical behaviour in societies with symmetric influences , 1983, Comb..

[19]  Sulamita Klein,et al.  Fixed-parameter algorithms for the cocoloring problem , 2014, Discret. Appl. Math..

[20]  David Peleg,et al.  Local majorities, coalitions and monopolies in graphs: a review , 2002, Theor. Comput. Sci..

[21]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[22]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[23]  Béla Bollobás,et al.  Random majority percolation , 2010 .

[24]  Pierre Duchet,et al.  Convex sets in graphs, II. Minimal path convexity , 1987, J. Comb. Theory B.

[25]  Stephan Olariu,et al.  P-Components and the Homogeneous Decomposition of Graphs , 1995, SIAM J. Discret. Math..

[26]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[27]  Rudini Menezes Sampaio,et al.  Restricted coloring problems on Graphs with few P4’s , 2014, Ann. Oper. Res..

[28]  Stephan Olariu,et al.  A tree representation for P4-sparse graphs , 1992, Discret. Appl. Math..

[29]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[30]  Jayme Luiz Szwarcfiter,et al.  On the Carathéodory Number for the Convexity of Paths of Order Three , 2012, SIAM J. Discret. Math..

[31]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[32]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[33]  Stephan Olariu,et al.  On the Structure of Graphs with Few P4s , 1998, Discret. Appl. Math..

[34]  John W. Moon,et al.  Embedding tournaments in simple tournaments , 1972, Discret. Math..

[35]  Zvia Agur Fixed Points of Majority Rule Cellular Automata with Application to Plasticity and Precision of the Immune System , 1991, Complex Syst..