On the evolution of laser pulses under a dynamic Quantum Control environment

This paper introduces the optimization of a quantum control application, the so-called molecular alignment problem, subject to a dynamic environment. Given the relative simplicity of optimized pulse-shapes in the low-intensity variant of the problem, versus the high complexity of the optimized pulse-shapes in the high-intensity case, a dynamic-intensity environment is simulated in a noise-free calculation. Specific evolution strategies, natural candidates for optimization in dynamic environments, are applied to this task. The calculations reveal the evolution of the pulse-shapes and their underlying evolving structures, that allow a complete physical interpretation. The combination of an optimization in a dynamic environment with the examination of the intermediate optimized solutions offers a sharper physics view of the problem, and accomplishes a fruitful interdisciplinary study.

[1]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[2]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[3]  M. Vrakking,et al.  Revival structures in picosecond laser-induced alignment of I2 molecules. I. Experimental results , 2002 .

[4]  H. Rabitz,et al.  Quantum mechanical optimal control of physical observables in microsystems , 1990 .

[5]  H. Rabitz,et al.  Why do effective quantum controls appear easy to find , 2006 .

[6]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[7]  Dudley R. Herschbach,et al.  Steric proficiency of polar 2Σ molecules in congruent electric and magnetic fields , 2000 .

[8]  Nikolaus Hansen,et al.  Step-Size Adaption Based on Non-Local Use of Selection Information , 1994, PPSN.

[9]  Lutz Schönemann Optimal number of evolution strategies mutation step sizes in dynamic environments , 2005, GECCO '05.

[10]  Lein,et al.  High-order harmonic generation in laser aligned molecules , 2002, QELS 2002.

[11]  M. Vrakking,et al.  Revival structures in picosecond laser-induced alignment of I2 molecules. II. Numerical modeling , 2002 .

[12]  T. Back,et al.  On the behavior of evolutionary algorithms in dynamic environments , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[13]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[14]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[15]  A. Rothman,et al.  Exploring the level sets of quantum control landscapes (9 pages) , 2006 .

[16]  N. Hansen,et al.  Step-Size Adaptation Based on Non-Local Use Selection Information , 1994 .

[17]  Gustav Gerber,et al.  Femtosecond quantum control of molecular dynamics in the condensed phase. , 2007, Physical chemistry chemical physics : PCCP.

[18]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[19]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[20]  Hans-Georg Beyer,et al.  Random Dynamics Optimum Tracking with Evolution Strategies , 2002, PPSN.

[21]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[22]  Ofer M. Shir,et al.  Evolutionary Algorithms in the Optimization of Dynamic Molecular Alignment , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[23]  Ofer M. Shir,et al.  Gaining Insights into Laser Pulse Shaping by Evolution Strategies , 2007, IWINAC.