Quantum Computation in Robotic Science and Applications

Using the effects of quantum mechanics for computing challenges has been an often discussed topic for decades. The frequent successes and early products in this area, which we have seen in recent years, indicate that we are currently entering a new era of computing. This paradigm shift will also impact the work of robotic scientists and the applications of robotics. New possibilities as well as new approaches to known problems will enable the creation of even more powerful and intelligent robots that make use of quantum computing cloud services or co-processors. In this position paper, we discuss potential application areas and also point out open research topics in quantum computing for robotics. We go into detail on the impact of quantum computing in artificial intelligence and machine learning, sensing and perception, kinematics as well as system diagnosis. For each topic we point out where quantum computing could be applied based on results from current research.

[1]  Daniel Serban Quantum Computing and Quantum Algorithms , 2020 .

[2]  Chao-Hua Yu,et al.  Quantum algorithm for visual tracking , 2018, Physical Review A.

[3]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[4]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[5]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[6]  Fei Yan,et al.  A survey of quantum image representations , 2015, Quantum Information Processing.

[7]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[8]  Russell Greiner,et al.  A Correction to the Algorithm in Reiter's Theory of Diagnosis , 1989, Artif. Intell..

[9]  Matthias Troyer,et al.  ProjectQ: An Open Source Software Framework for Quantum Computing , 2016, ArXiv.

[10]  K. Igeta,et al.  Quantum mechanical computers with single atom and photon fields , 1988 .

[11]  Xingquan Zhu,et al.  Knowledge Discovery and Data Mining: Challenges and Realities , 2007 .

[12]  Zainab Abdullah Hassoun,et al.  Control Design of Robotic Manipulator Based on Quantum Neural Network , 2018 .

[13]  Weiguang Li,et al.  Nonlinear model predictive control for visual servoing from a set of points , 2016, 2016 IEEE International Conference on Mechatronics and Automation.

[14]  Brian C. Williams,et al.  Hybrid estimation of complex systems , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[15]  Donald A. Sofge,et al.  A Survey of Quantum Programming Languages: History, Methods, and Tools , 2008, Second International Conference on Quantum, Nano and Micro Technologies (ICQNM 2008).

[16]  Cornelis Vuik,et al.  On the impact of quantum computing technology on future developments in high-performance scientific computing , 2017, Ethics and Information Technology.

[17]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[18]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[19]  Faisal Shah Khan,et al.  Advances in the Quantum Theoretical Approach to Image Processing Applications , 2017, ACM Comput. Surv..

[20]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[21]  Thomas R. Bromley,et al.  Quantum computational finance: Monte Carlo pricing of financial derivatives , 2018, Physical Review A.

[22]  Nan Jiang,et al.  Quantum Point Cloud and its Compression , 2017 .

[23]  Nathan Wiebe,et al.  Can small quantum systems learn , 2015, Quantum Inf. Comput..

[24]  H. Michalska,et al.  Receding horizon control of nonlinear systems , 1988, Proceedings of the 28th IEEE Conference on Decision and Control,.

[25]  Bronis R. de Supinski,et al.  Heterogeneous Task Scheduling for Accelerated OpenMP , 2012, 2012 IEEE 26th International Parallel and Distributed Processing Symposium.

[26]  N. Buniyamin,et al.  An Overview of Autonomous Mobile Robot Path Planning Algorithms , 2006, 2006 4th Student Conference on Research and Development.

[27]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[28]  Zonghai Chen,et al.  Quantum robot: structure, algorithms and applications , 2005, Robotica.

[29]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[30]  Kaoru Hirota,et al.  A FRAMEWORK FOR REPRESENTING AND PRODUCING MOVIES ON QUANTUM COMPUTERS , 2011 .

[31]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[32]  Yishai A. Feldman,et al.  Algorithmics: The Spirit of Computing , 1987 .

[33]  Sebastian Thrun,et al.  Multi-robot SLAM with Sparse Extended Information Filers , 2003, ISRR.

[34]  Andrew M. Childs,et al.  Spatial search by quantum walk , 2003, quant-ph/0306054.

[35]  Frédéric Magniez,et al.  Quantum algorithms for the triangle problem , 2005, SODA '05.

[36]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[37]  John K. Tsotsos,et al.  Visual search for an object in a 3D environment using a mobile robot , 2010, Comput. Vis. Image Underst..

[38]  Luca Console,et al.  Readings in Model-Based Diagnosis , 1992 .

[39]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[40]  Eric J. M. Lang,et al.  Molecular Dynamics, Quantum Mechanics, and Combined Quantum Mechanics/Molecular Mechanics Methods for Drug Discovery and Development , 2017 .

[41]  Richard Moulds,et al.  Quantum Random Number Generators , 2016 .

[42]  Martin Rötteler,et al.  Q#: Enabling Scalable Quantum Computing and Development with a High-level DSL , 2018, RWDSL2018.

[43]  Abner Shimony,et al.  Chemistry, Quantum Mechanics and Reductionism: Perspectives in Theoretical Chemistry , 1981 .

[44]  Vincenzo Lippiello,et al.  Nonprehensile Manipulation of Deformable Objects: Achievements and Perspectives from the Robotic Dynamic Manipulation Project , 2018, IEEE Robotics & Automation Magazine.

[45]  Isaac L. Chuang,et al.  Quantum Inference on Bayesian Networks , 2014, ArXiv.

[46]  Gilles Brassard,et al.  Oracle Quantum Computing , 1994 .

[47]  Tanay Mehta,et al.  Quantum Robotics: A Primer on Current Science and Future Perspectives , 2017, Quantum Robotics.

[48]  Robin R. Murphy,et al.  Introduction to AI Robotics , 2000 .

[49]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[50]  Mikhail Smelyanskiy,et al.  Practical optimization for hybrid quantum-classical algorithms , 2017, 1701.01450.

[51]  Andrew Y. C. Nee,et al.  Robot programming using augmented reality: An interactive method for planning collision-free paths , 2009 .

[52]  Liu Peijie,et al.  Trajectory Planning of Robot Based on Quantum Genetic Algorithm , 2017 .

[53]  Walter J. Gutjahr,et al.  Stochastic multi-objective optimization: a survey on non-scalarizing methods , 2016, Ann. Oper. Res..

[54]  Mohamed Batouche,et al.  A Quantum-Inspired Genetic Algorithm for Multi-source Affine Image Registration , 2004, ICIAR.

[55]  Rongxing Lu,et al.  Securing the Internet of Things in a Quantum World , 2017, IEEE Communications Magazine.

[56]  S. N. Omkar,et al.  Quantum behaved Particle Swarm Optimization (QPSO) for multi-objective design optimization of composite structures , 2009, Expert Syst. Appl..

[57]  Xiang Liu,et al.  A comparative study of A-star algorithms for search and rescue in perfect maze , 2011, 2011 International Conference on Electric Information and Control Engineering.

[58]  Nicholas Roy,et al.  Global A-Optimal Robot Exploration in SLAM , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[59]  L. Lamata,et al.  Quantum algorithm for solving linear differential equations: Theory and experiment , 2018, Physical Review A.

[60]  R. Improta,et al.  Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. , 2016, Chemical reviews.

[61]  Hans-J. Briegel,et al.  Quantum-enhanced machine learning , 2016, Physical review letters.

[62]  Audun Jøsang,et al.  The Impact of Quantum Computing on Present Cryptography , 2018, ArXiv.

[63]  Zijia Li,et al.  Global optimisation analysis for a planar redundant serial manipulator , 2018 .

[64]  R. Feynman Simulating physics with computers , 1999 .

[65]  Samuel J. Lomonaco, Jr.,et al.  Distributed quantum computing: a distributed Shor algorithm , 2004, SPIE Defense + Commercial Sensing.

[66]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[67]  Paul Benioff QUANTUM ROBOTS AND ENVIRONMENTS , 1998 .

[68]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[69]  Brian P. Gerkey,et al.  PARALLEL STOCHASTIC HILLCLIMBING WITH SMALL TEAMS , 2005 .

[70]  Gilles Brassard,et al.  Quantum speed-up for unsupervised learning , 2012, Machine Learning.

[71]  Quan Chen,et al.  CPU + GPU scheduling with asymptotic profiling , 2014, Parallel Comput..

[72]  Kris K. Hauser On responsiveness, safety, and completeness in real-time motion planning , 2012, Auton. Robots.

[73]  Tzyh Jong Tarn,et al.  Quantum Reinforcement Learning , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[74]  Andreas Wichert Principles of Quantum Artificial Intelligence , 2013 .

[75]  Peter Wittek,et al.  Quantum Machine Learning: What Quantum Computing Means to Data Mining , 2014 .

[76]  Hans-J. Briegel,et al.  Advances in quantum reinforcement learning , 2017, 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[77]  R. Somma,et al.  Quantum Algorithms for Systems of Linear Equations Inspired by Adiabatic Quantum Computing. , 2018, Physical review letters.

[78]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[79]  R. Feynman Quantum mechanical computers , 1986 .

[80]  Manu Sood,et al.  Searching and Optimization Techniques in Artificial Intelligence: A Comparative Study & Complexity Analysis , 2014 .

[81]  Ashish Kapoor,et al.  Quantum Perceptron Models , 2016, NIPS.

[82]  Stefano Giordani,et al.  A Distributed Algorithm for the Multi-Robot Task Allocation Problem , 2010, IEA/AIE.

[83]  Samuel J. Lomonaco,et al.  Generalized GHZ States and Distributed Quantum Computing , 2004 .

[84]  Masoud Mohseni,et al.  Quantum support vector machine for big feature and big data classification , 2013, Physical review letters.

[85]  M.C. Batouche,et al.  A genetic quantum algorithm for image registration , 2004, Proceedings. 2004 International Conference on Information and Communication Technologies: From Theory to Applications, 2004..

[86]  P. Raja,et al.  Optimal path planning of mobile robots: A review , 2012 .