Progress in the development of interpenetrating polymer network hydrogels.

Interpenetrating polymer networks (IPNs) have been the subject of extensive study since their advent in the 1960s. Hydrogel IPN systems have garnered significant attention in the last two decades due to their usefulness in biomedical applications. Of particular interest are the mechanical enhancements observed in "double network" IPN systems which exhibit nonlinear increases in fracture properties despite being composed of otherwise weak polymers. We have built upon pioneering work in this field as well as in responsive IPN systems to develop an IPN system based on end-linked poly-(ethylene glycol) (PEG) and loosely crosslinked poly(acrylic acid) (PAA) with hydrogen bond-reinforced strain-hardening behavior in water and high initial Young's moduli under physiologic buffer conditions through osmotically induced pre-stress. Uniaxial tensile tests and equilibrium swelling measurements were used to study PEG/PAA IPN hydrogels having second networks prepared with varying crosslinking and photoinitiator content, pH, solids content, and comonomers. Studies involving the addition of non-ionic comonomers and neutralization of the second network showed that template polymerization appears to be important in the formation of mechanically enhanced IPNs.

[1]  Fan Zhang,et al.  Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct , 2007, Biomedical microdevices.

[2]  K. Frisch,et al.  A review of kinetic studies on the formation of interpenetrating polymer networks , 1996 .

[3]  T. Kurokawa,et al.  Determination of fracture energy of high strength double network hydrogels. , 2005, The journal of physical chemistry. B.

[4]  N. Peppas,et al.  Preparation and characterization of pH-sensitive, interpenetrating networks of poly(vinyl alcohol) and poly(acrylic acid) , 1995 .

[5]  Y. Osada,et al.  Advanced in Polymer Science, Conversion of Chemical into Mechanical Energy by Synthetic Polymers , 1987 .

[6]  T. Kurokawa,et al.  Double‐Network Hydrogels with Extremely High Mechanical Strength , 2003 .

[7]  H. Frisch,et al.  Topologically interpenetrating elastomeric networks , 1969 .

[8]  S. Jeon,et al.  Characterization of poly(carboxylic acid)/poly(ethylene oxide) blends formed through hydrogen bonding by spectroscopic and calorimetric analyses , 1988 .

[9]  Seon Jeong Kim,et al.  Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid) , 1999 .

[10]  A. Chapiro,et al.  Sur une exaltation de l'“effet de matrice” lors de la polymerisation de l'acide acrylique dans certains melanges ternaires , 1981 .

[11]  C. Frank,et al.  Complex formation between poly(acrylic acid) and pyrene-labeled polyethylene glycol in aqueous solution , 1987 .

[12]  Yoshihito Osada,et al.  Conversion of Chemical into Mechanical Energy by Synsthetic Polymer Gels (Chemomechanical System) , 1987 .

[13]  Y. Osada,et al.  Water and protein permeation through polymeric membrane having mechanochemically expanding and contracting pores. Function of chemical valve. I , 1981 .

[14]  A. Chapiro,et al.  Influence of solvents on the molecular associations and on the radiation initiated polymerization of acrylic acid , 1977 .

[15]  T. Kurokawa,et al.  Effect of polymer entanglement on the toughening of double network hydrogels. , 2005, The journal of physical chemistry. B.

[16]  J. Gong,et al.  Large Strain Hysteresis and Mullins Effect of Tough Double-Network Hydrogels , 2007 .

[17]  Hoo-Kyun Choi,et al.  A novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of poly (ethylene glycol) , 1999 .

[18]  R. Zhuo,et al.  Poly(vinyl alcohol)/poly(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels with rapid response to temperature changes , 2003 .

[19]  K. Okumura,et al.  Toughness of double elastic networks , 2004 .

[20]  Toyoichi Tanaka,et al.  Volume transition in a gel driven by hydrogen bonding , 1991, Nature.

[21]  A. Chapiro,et al.  Influence de la temperature sur les manifestations de l' “effet de matrice” dans la polymerisation de l'acide acrylique en solution , 1981 .

[22]  H. Frisch,et al.  Recent advances in interpenetrating polymer networks , 1982 .

[23]  Yoshihito Osada,et al.  Structural Characteristics of Double Network Gels with Extremely High Mechanical Strength , 2004 .

[24]  L. Sperling,et al.  Synthesis and mechanical behavior of interpenetrating polymer networks: Poly(ethyl acrylate) and polystyrene , 1969 .

[25]  H. Brown A Model of the Fracture of Double Network Gels , 2007 .

[26]  S. Połowiński Template polymerisation and co-polymerisation , 2002 .

[27]  J. Noolandi,et al.  Biocompatibility of a Hydrogel Corneal Inlay in vivo , 2006 .

[28]  C. Frank,et al.  Dynamic light-scattering studies of the fractal aggregation of poly(methacrylic acid) and poly(ethylene glycol) , 1990 .

[29]  E. Thomas,et al.  Morphological characterization of reaction injection moulded (RIM) polyester-based polyurethanes , 1980 .

[30]  Avanish Kumar Srivastava,et al.  Interpenetrating polymer networks : a review on synthesis and properties , 1994 .

[31]  C. L. Bell,et al.  Biomedical membranes from hydrogels and interpolymer complexes , 1995 .

[32]  I. Soutar,et al.  FLUORESCENCE ANISOTROPY STUDIES OF POLYELECTROLYTE MOBILITY AND INTERPOLYELECTROLYTE COMPLEXATION IN AQUEOUS SOLUTION , 1990 .

[33]  J. Feijen,et al.  COMPLEXATION OF POLY(ETHYLENE OXIDE) WITH POLY(ACRYLIC ACID-CO-HYDROXYETHYL METHACRYLATE)S , 1996 .

[34]  P. Flory Principles of polymer chemistry , 1953 .

[35]  T. Kotaka,et al.  Complex-forming poly(oxyethylene):poly(acrylic acid) interpenetrating polymer networks. 1. Preparation, structure, and viscoelastic properties , 1985 .

[36]  H. Morawetz,et al.  Kinetics of polymer complex interchange in poly(acrylic acid)-poly(oxyethylene) solutions , 1982 .

[37]  M. Shaw,et al.  Polymer-Polymer Miscibility , 1979 .

[38]  C. Frank,et al.  Effect of the hydrophobic interaction in the poly(methacrylic acid)/pyrene end-labeled poly(ethylene glycol) complex , 1987 .

[39]  T. Kotaka,et al.  Complex-Forming Polyoxyethylene: Poly(acrylic acid) Interpenetrating Polymer Networks III. Swelling and Mechanochemical Behavior , 1989 .

[40]  A. Chapiro,et al.  Influence de la temperature sur les associations moleculaires et sur la polymerisation de l'acide acrylique en solution , 1975 .

[41]  Won-Gun Koh,et al.  Biomimetic strain hardening in interpenetrating polymer network hydrogels , 2007 .

[42]  R. Darveau,et al.  Microcalorimetric investigation on interaction between poly(acrylic acid) and oxyethylene oligomers in water , 1990 .

[43]  R. Audebert,et al.  Interpolymer association between acrylic acid copolymers and polyethylene glycol: effects of the copolymer nature , 1994 .

[44]  A. Khokhlov,et al.  Collapse of polyelectrolyte networks induced by their interaction with oppositely charged surfactants , 1992 .