Micro spherical anatase phase TiO2 thin films for room temperature operated formaldehyde gas sensor applications

[1]  Li Li,et al.  Co3O4 Nanocrystals Coupled with Co-Doped TiO2 Nanobelts as a Synergistic Photocatalyst for Efficient Photoconversion of CO2 and H2O to Solar Fuels , 2023, The Journal of Physical Chemistry C.

[2]  P. Nagaraju,et al.  Mesoporous sieve structured ITO-based thin films for enhanced formaldehyde detection , 2022, Journal of Materials Science: Materials in Electronics.

[3]  S. N. Alamri,et al.  Investigation of the impact of iron amounts on optical and physical properties of coated TiO2 thin films used for PV solar cells , 2022, Optical Materials: X.

[4]  P. Ghosal,et al.  Growth and characterization of electron beam evaporated NiO thin films for room temperature formaldehyde sensing , 2022, Sensors and Actuators A: Physical.

[5]  Yinghao Guo,et al.  Metal Oxide Semiconductor Sensors for Triethylamine Detection: Sensing Performance and Improvements , 2022, Chemosensors.

[6]  D. Edla,et al.  Prospects of spray pyrolysis technique for gas sensor applications - A comprehensive review , 2022, Journal of Analytical and Applied Pyrolysis.

[7]  R. R. Menezes,et al.  Use of nanostructured and modified TiO2 as a gas sensing agent , 2021, Cerâmica.

[8]  P. Nagaraju,et al.  Nanostructured Indium Oxide Thin Films as a Room Temperature Toluene Sensor , 2021, ACS omega.

[9]  Da-zhi Chen,et al.  The adsorption mechanism of formaldehyde molecules on ZnO-SAW sensor at a different relative humidity , 2021, Results in Physics.

[10]  M. Tavakoli,et al.  The behavior of the active modes of the anatase phase of TiO2 at high temperatures by Raman scattering spectroscopy , 2021, Indian Journal of Physics.

[11]  C. Wolverton,et al.  Raspberry-like mesoporous Co-doped TiO2 nanospheres for a high-performance formaldehyde gas sensor , 2021, Journal of Materials Chemistry A.

[12]  Yong-Jin Yoon,et al.  TiO2 Nanorods and Pt Nanoparticles under a UV-LED for an NO2 Gas Sensor at Room Temperature , 2021, Sensors.

[13]  Sang-Mok Chang,et al.  Development of fast resettable gravimetric aromatic gas sensors using quartz crystal microbalance , 2020 .

[14]  A. Salih,et al.  Influence of the Annealing Temperature on the Thickness and Roughness of La2Ti2O7 Thin Films , 2020, Advances in Materials Physics and Chemistry.

[15]  J. H. Lee,et al.  Selective C2H2 detection with high sensitivity using SnO2 nanorod based gas sensors integrated with a gas chromatography , 2020 .

[16]  G. V.,et al.  Gas sensing nature and characterization of Zr doped TiO2 films prepared by automated nebulizer spray pyrolysis technique , 2020 .

[17]  S. Rezaee,et al.  Micromorphology analysis of TiO2 thin films by atomic force microscopy images: The influence of postannealing , 2020, Microscopy research and technique.

[18]  S. Mustapha,et al.  Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles , 2019, Advances in Natural Sciences: Nanoscience and Nanotechnology.

[19]  M. Krunks,et al.  Photocatalytic Degradation of Different VOCs in the Gas-Phase over TiO2 Thin Films Prepared by Ultrasonic Spray Pyrolysis , 2019, Catalysts.

[20]  B. Dong,et al.  Corrigendum: Sol-gel Synthesis of TiO2 With p-Type Response to Hydrogen Gas at Elevated Temperature , 2019, Front. Mater..

[21]  A. Mere,et al.  TiO2 thin films by ultrasonic spray pyrolysis , 2019, IOP Conference Series: Materials Science and Engineering.

[22]  A. Gowen,et al.  Characterisation of titanium oxide layers using Raman spectroscopy and optical profilometry: Influence of oxide properties , 2019, Results in Physics.

[23]  I. O. Acik,et al.  TiO2 thin films by ultrasonic spray pyrolysis as photocatalytic material for air purification , 2019, Royal Society Open Science.

[24]  S. S. Patil,et al.  Nanostructured TiO2 thin films by chemical bath deposition method for high photoelectrochemical performance , 2018, Materials Research Express.

[25]  Fanli Meng,et al.  Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets , 2018, Sensors and Actuators B: Chemical.

[26]  R. Mane,et al.  Low-Temperature Ionic Layer Adsorption and Reaction Grown Anatase TiO2 Nanocrystalline Films for Efficient Perovskite Solar Cell and Gas Sensor Applications , 2018, Scientific Reports.

[27]  Y. Kudriavtsev,et al.  TiO2 thin film based gas sensors for CO-detection , 2018, Journal of Materials Science: Materials in Electronics.

[28]  B. Mwakikunga,et al.  Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method , 2018, Results in Physics.

[29]  P. Nagaraju,et al.  ZnO wrinkled nanostructures: enhanced BTX sensing , 2018, Journal of Materials Science: Materials in Electronics.

[30]  N. Uzar Investigation of detailed physical properties and solar cell performances of various type rare earth elements doped ZnO thin films , 2018 .

[31]  C. Julien,et al.  Anatase TiO2 nanoparticles for lithium-ion batteries , 2018, Ionics.

[32]  S. Sali,et al.  Nanocrystalline proprieties of TiO2 thin film deposited by ultrasonic spray pulverization as an anti-reflection coating for solar cells applications , 2017 .

[33]  Luyu Wang,et al.  High performance formaldehyde detection based on a novel copper (II) complex functionalized QCM gas sensor , 2017 .

[34]  A. Benyoussef,et al.  Thickness effect on the optical properties of TiO2-anatase thin films prepared by ultrasonic spray pyrolysis: Experimental and ab initio study , 2017 .

[35]  V. Balasubramanian,et al.  Effect of deposition temperature on structural, optical and electrical properties of copper bismuth sulphide (CuBiS2) thin films deposited by chemical bath deposition , 2017 .

[36]  U. Hashim,et al.  The morphological characterizations of titanium dioxide (TiO2) via sol-gel method , 2017 .

[37]  C. Pinna,et al.  An optical method for measuring surface roughness of machined carbon fibre-reinforced plastic composites , 2017 .

[38]  Giovanni Neri,et al.  Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review , 2016 .

[39]  X. Liu,et al.  Ag-Functionalized macro-/mesoporous AZO synthesized by solution combustion for VOCs gas sensing application , 2016 .

[40]  Yadong Jiang,et al.  Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide , 2016 .

[41]  M. Baryshnikova,et al.  CVD Deposited Titania Thin Films for Gas Sensors with Improved Operating Characteristics , 2015 .

[42]  Ki-Hyun Kim,et al.  Coordination polymers: Opportunities and challenges for monitoring volatile organic compounds , 2015 .

[43]  K. Vijayalakshmi,et al.  Effect of pyrolytic temperature on the properties of TiO2/ITO films for hydrogen sensing. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[44]  Z. Dohcevic-Mitrovic,et al.  One-step preparation and photocatalytic performance of vanadium doped TiO2 coatings , 2015 .

[45]  B. Jeyaprakash,et al.  CeO2 thin film as a low-temperature formaldehyde sensor in mixed vapour environment , 2014, Bulletin of Materials Science.

[46]  B. Fang,et al.  Large-scale synthesis of TiO2 microspheres with hierarchical nanostructure for highly efficient photodriven reduction of CO2 to CH4. , 2014, ACS applied materials & interfaces.

[47]  S. Jeong,et al.  Hydrothermal synthesis of TiO2 nanotubes and their application as an over-layer for dye-sensitized solar cells , 2014 .

[48]  Hui Yang,et al.  Zeolitic imidazolate framework as formaldehyde gas sensor. , 2014, Inorganic chemistry.

[49]  Xiaogan Li,et al.  Hierarchical structured TiO2 nano-tubes for formaldehyde sensing , 2012 .

[50]  Yan Zhang,et al.  A novel electrochemical sensor for formaldehyde based on palladium nanowire arrays electrode in alkaline media , 2012 .

[51]  R. Ananthakumar,et al.  Effect of substrate temperature on structural, morphological and optical properties of crystalline titanium dioxide films prepared by DC reactive magnetron sputtering , 2012, Journal of Materials Science: Materials in Electronics.

[52]  Junhui He,et al.  CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas. , 2011, Environmental science & technology.

[53]  N. Iftimie,et al.  Electrical conduction mechanism and gas sensing properties of Pd-doped TiO2 films , 2011 .

[54]  Hiroyuki Kudo,et al.  Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring. , 2010, Biosensors & bioelectronics.

[55]  Dong Xiang,et al.  Metal Oxide Gas Sensors: Sensitivity and Influencing Factors , 2010, Sensors.

[56]  Ning Han,et al.  Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO , 2009 .

[57]  Luca Francioso,et al.  TiO2 nanowires array fabrication and gas sensing properties , 2008 .

[58]  K. Khojier Preparation and investigation of Al-doped ZnO thin films as a formaldehyde sensor with extremely low detection limit and considering the effect of RH , 2021 .

[59]  Mohd Ubaidullah,et al.  Noticeable improvement in the toxic gas-sensing activity of the Zn-doped TiO2 films for sensing devices , 2021 .

[60]  A. Shihab,et al.  Design and Construction of Nanostructure TiO2 Thin Film Gas Sensor Prepared by R.F Magnetron Sputtering Technique , 2019, Energy Procedia.

[61]  K. Vijayalakshmi,et al.  Influence of post-deposition annealing and the ITO underlayer on the properties of hybrid TiO2/ITO nanocomposite for enhanced hydrogen sensing at room temperature , 2018 .

[62]  M. M. Mohagheghi,et al.  The effect of solution flow rate and substrate temperature on structural and optical properties of TiO2 films deposited by spray pyrolysis technique , 2017 .

[63]  K. Chahrour,et al.  Effect of Deposition Temperature on Structural and Optical Properties of Chemically Sprayed ZnS Thin Films , 2016 .

[64]  Jing Zhu,et al.  Hierarchically porous indium oxide nanolamellas with ten-parts-per-billion-level formaldehyde-sensing performance , 2015 .

[65]  W. Reimringer,et al.  Selective Detection of Hazardous Indoor VOCs Using Metal Oxide Gas Sensors , 2014 .

[66]  Feng-Chao Chung,et al.  Fabrication of a Au@SnO2 core–shell structure for gaseous formaldehyde sensing at room temperature , 2014 .

[67]  L. A. Patil,et al.  Nickel doped spray pyrolyzed nanostructured TiO2 thin films for LPG gas sensing , 2013 .

[68]  Thu-Hoa Tran-Thi,et al.  Real-time detection of formaldehyde by a fluorescence-based sensor , 2010 .