The role of omega-3 polyunsaturated fatty acids in retinal function

[1]  Y. Koutalos,et al.  PHOTOTRANSDUCTION IN RETINAL RODS AND CONES , 2001 .

[2]  H. Tojo,et al.  High-linoleate and high-alpha-linolenate diets affect learning ability and natural behavior in SAMR1 mice. , 1999, The Journal of nutrition.

[3]  A. Vingrys,et al.  Effects of dietary n-3 fatty acid deficiency and repletion in the guinea pig retina. , 1999, Investigative ophthalmology & visual science.

[4]  D. Huster,et al.  Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. , 1998, Biochemistry.

[5]  N. Salem,et al.  Why is docosahexaenoic acid essential for nervous system function? , 1998, Biochemical Society transactions.

[6]  A. Vingrys,et al.  Effect of diet on the rate of depletion of n-3 fatty acids in the retina of the guinea pig. , 1998, Journal of lipid research.

[7]  R. Carr,et al.  Evidence for photoreceptor changes in patients with diabetic retinopathy. , 1997, Investigative Ophthalmology and Visual Science.

[8]  N. Bazan,et al.  Post-Golgi Vesicles Cotransport Docosahexaenoyl-Phospholipids and Rhodopsin during Frog Photoreceptor Membrane Biogenesis* , 1997, The Journal of Biological Chemistry.

[9]  N. Noy,et al.  Docosahexaenoic Acid Modulates the Interactions of the Interphotoreceptor Retinoid-binding Protein with 11-cis-Retinal* , 1996, The Journal of Biological Chemistry.

[10]  A. Cideciyan,et al.  An Alternative Phototransduction Model for Human Rod and Cone ERG a-waves: Normal Parameters and Variation with Age , 1996, Vision Research.

[11]  H. Sprecher,et al.  Active synthesis of C24:5, n-3 fatty acid in retina. , 1996, The Biochemical journal.

[12]  A. Vingrys,et al.  Electrodiagnostic methods in vision , 1996 .

[13]  D. Hood,et al.  Recovery kinetics of human rod phototransduction inferred from the two-branched alpha-wave saturation function. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  A. Hendrickson,et al.  Development of primate rod structure and function , 1996 .

[15]  E. Pugh,et al.  Recovery phase of the murine rod photoresponse reconstructed from electroretinographic recordings , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  D. Hood,et al.  Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation. , 1995, Investigative ophthalmology & visual science.

[17]  G. Quinn,et al.  Development of electroretinogram and rod phototransduction response in human infants. , 1995, Investigative ophthalmology & visual science.

[18]  R. Gibson,et al.  Are long-chain polyunsaturated fatty acids essential nutrients in infancy? , 1995, The Lancet.

[19]  R. Hansen,et al.  The development of the rod photoresponse from dark-adapted rats. , 1995, Investigative ophthalmology & visual science.

[20]  M. Brown,et al.  Modulation of Rhodopsin Function by Properties of the Membrane Bilayer , 2022 .

[21]  E. Birch,et al.  Significance of ω3 Fatty Acids for Retinal and Brain Development of Preterm and Term Infants1 , 1994 .

[22]  D. Hood,et al.  Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. , 1994, Investigative ophthalmology & visual science.

[23]  G. Anderson,et al.  Effect of dietary N-3 fatty acids upon the phospholipid molecular species of the monkey retina. , 1994, Investigative ophthalmology & visual science.

[24]  P. Sieving,et al.  A proximal retinal component in the primate photopic ERG a-wave. , 1994, Investigative ophthalmology & visual science.

[25]  R. E. Anderson,et al.  Synthesis of docosahexaenoic acid by retina and retinal pigment epithelium. , 1993, Biochemistry.

[26]  N. Noy,et al.  Interactions of all-trans-retinol and long-chain fatty acids with interphotoreceptor retinoid-binding protein. , 1993, Biochemistry.

[27]  H. Hamm,et al.  NMR structure of a receptor-bound G-protein peptide , 1993, Nature.

[28]  J. L. Schnapf,et al.  Visual transduction in human rod photoreceptors. , 1993, The Journal of physiology.

[29]  G. Durand,et al.  Effect of dietary alpha-linolenic acid on functional characteristic of Na+/K(+)-ATPase isoenzymes in whole brain membranes of weaned rats. , 1993, Biochimica et biophysica acta.

[30]  E. Birch,et al.  Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids. , 1992, Investigative ophthalmology & visual science.

[31]  P. Wainwright Do essential fatty acids play a role in brain and behavioral development? , 1992, Neuroscience & Biobehavioral Reviews.

[32]  R. Uauy,et al.  Effect of docosahexaenoic acid on membrane fluidity and function in intact cultured Y-79 retinoblastoma cells. , 1992, Archives of biochemistry and biophysics.

[33]  E N Pugh,et al.  A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. , 1992, The Journal of physiology.

[34]  W. Connor,et al.  Postnatal deficiency of omega-3 fatty acids in monkeys: Fluid intake and urine concentration , 1992, Physiology & Behavior.

[35]  R. Uauy,et al.  Essential fatty acid requirements for normal eye and brain development. , 1991, Seminars in perinatology.

[36]  H. Sprecher,et al.  The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. , 1991, The Journal of biological chemistry.

[37]  E. Berman,et al.  Biochemistry of the Eye , 1991, Perspectives in Vision Research.

[38]  J. Nettleton,et al.  Omega-3 fatty acids: comparison of plant and seafood sources in human nutrition. , 1991, Journal of the American Dietetic Association.

[39]  D. Hood,et al.  A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography , 1990, Visual Neuroscience.

[40]  L. Frishman,et al.  Origin of negative potentials in the light-adapted ERG of cat retina. , 1990, Journal of neurophysiology.

[41]  W. Connor,et al.  Polydipsia in rhesus monkeys deficient in omega-3 fatty acids , 1990, Physiology & Behavior.

[42]  G Durand,et al.  The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. , 1989, The Journal of nutrition.

[43]  P. Williams Biological membranes: aberrations in membrane structure and function : Edited by M.L. Karnovsky, A. Leaf and L.C. Bolis; Liss, New York, 1988; xvii + 406 pages; $96.00 , 1989 .

[44]  J. Selhorst,et al.  The Retina: An Approachable Part of the Brain , 1988 .

[45]  W. Cobbs,et al.  Kinetics and components of the flash photocurrent of isolated retinal rods of the larval salamander, Ambystoma tigrinum. , 1987, The Journal of physiology.

[46]  D. Baylor,et al.  How photoreceptor cells respond to light. , 1987, Scientific American.

[47]  T. Lamb Transduction in vertebrate photoreceptors: the roles of cyclic GMP and calcium , 1986, Trends in Neurosciences.

[48]  D. S. Lin,et al.  Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[49]  G. Pascal,et al.  Recovery of Altered Fatty Acid Composition Induced by a Diet Devoid of n‐3 Fatty Acids in Myelin, Synaptosomes, Mitochondria, and Microsomes of Developing Rat Brain , 1986, Journal of neurochemistry.

[50]  J. Dowling,et al.  Light-induced potassium fluxes in the skate retina , 1985, Neuroscience.

[51]  J. Puymirat,et al.  Effect of Polyunsaturated Fatty Acids on Fetal Mouse Brain Cells in Culture in a Chemically Defined Medium , 1983, Journal of neurochemistry.

[52]  B. Hyman,et al.  Choline Uptake in Cultured Human Y79 Retinoblastoma Cells: Effect of Polyunsaturated Fatty Acid Compositional Modifications , 1982, Journal of neurochemistry.

[53]  N. Bazan,et al.  Composition and biosynthesis of molecular species of retina phosphoglycerides , 1980, Neurochemistry International.

[54]  D. Baylor,et al.  The membrane current of single rod outer segments , 1979, Vision Research.

[55]  Anne B. Fulton,et al.  The human rod ERG: Correlation with psychophysical responses in light and dark adaptation , 1978, Vision Research.

[56]  C. Karwoski,et al.  Light-evoked changes in extracellular potassium concentration in mudpuppy retina , 1978, Brain Research.

[57]  B. L. Walker,et al.  Learning behavior and brain lipid composition in rats subjected to essential fatty acid deficiency during gestation, lactation and growth. , 1978, The Journal of nutrition.

[58]  H. Rasmussen,et al.  Electrical and adaptive properties of rod photoreceptors in bufo marinus. II. Effects of cyclic nucleotides and protaglandins , 1977, The Journal of general physiology.

[59]  R. E. Anderson,et al.  Further studies on the chemistry of photoreceptor membranes of rats fed an essential fatty acid deficient diet. , 1975, Experimental eye research.

[60]  A. Sinclair Long-chain polyunsaturated fatty acids in the mammalian brain , 1975, Proceedings of the Nutrition Society.

[61]  R. M. Benolken,et al.  Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. , 1975, Science.

[62]  F. Dudek,et al.  Slow PIII component of the carp electroretinogram , 1975, The Journal of general physiology.

[63]  F. Spitz,et al.  Linoleic- and linolenic acid dependency of some brain membrane-bound enzymes after lipid deprivation in rats. , 1974, Biochemical and biophysical research communications.

[64]  R. M. Benolken,et al.  Membrane Fatty Acids Associated with the Electrical Response in Visual Excitation , 1973, Science.

[65]  R. Anderson,et al.  Alteration of Disc Formation in Photoreceptors of Rat Retina , 1973, Science.

[66]  R. E. Anderson,et al.  Lipids of ocular tissues. 8. The effects of essential fatty acid deficiency on the phospholipids of the photoreceptor membranes of rat retina. , 1972, Archives of biochemistry and biophysics.

[67]  R W Rodieck,et al.  Components of the electroretinogram--a reappraisal. , 1972, Vision research.

[68]  R. Lyman,et al.  Evidence for nonessentiality of linolenic acid in the diet of the rat. , 1971, The Journal of nutrition.

[69]  S. Futterman,et al.  Effect of essential fatty acid deficiency on the fatty acid composition, morphology, and electroretinographic response of the retina. , 1971, Investigative ophthalmology.

[70]  K. Brown,et al.  Intracellular Responses to Light from Cat Pigment Epithelium: Origin of the Electroretinogram c-Wave , 1970, Nature.

[71]  R. Anderson,et al.  Lipids of ocular tissues. IV. A comparison of the phospholipids from the retina of six mammalian species. , 1970, Experimental Eye Research.

[72]  D. Bok,et al.  Practical Remarks on Gout, Rheumatic Fever, and Chonic Rheumatism of the Joints; Being the Substance of the Croonian Lectures for the Present Year, Delivered at the College of Physicians , 1844, Edinburgh Medical and Surgical Journal.

[73]  W. A. Hagins,et al.  Signal Transmission along Retinal Rods and the Origin of the Electroretinographic a-Wave , 1969, Nature.

[74]  W. Cobbs,et al.  Rhodopsin Cycle in the Living Eye of the Rat , 1969, Nature.

[75]  K. Brown,et al.  The electroretinogram: its components and their origins. , 1968, UCLA forum in medical sciences.

[76]  R. W. Young THE RENEWAL OF PHOTORECEPTOR CELL OUTER SEGMENTS , 1967, The Journal of cell biology.

[77]  R. Cone Early Receptor Potential of the Vertebrate Retina , 1964, Nature.

[78]  J. Andrews,et al.  THE FATTY ACID COMPOSITION OF HUMAN RETINAL VITAMIN A ESTER AND THE LIPIDS OF HUMAN RETINAL TISSUE. , 1964, Investigative ophthalmology.

[79]  R. Granit The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve , 1933, The Journal of physiology.

[80]  G. Burr,et al.  Nutrition classics from The Journal of Biological Chemistry 82:345-67, 1929. A new deficiency disease produced by the rigid exclusion of fat from the diet. , 1929, Nutrition reviews.

[81]  D. McLeod,et al.  Fundamentals and Principles of Ophthalmology , 2001 .

[82]  J. Aran,et al.  Changes in auditory brainstem responses in alpha-linolenic acid deficiency as a function of age in rats. , 1999, Audiology : official organ of the International Society of Audiology.

[83]  A. Sinclair,et al.  The contribution of animal models to understanding the role of fats in infant nutrition. , 1998 .

[84]  A. Vingrys,et al.  Effect of dietary n-3 deficiency on the electroretinogram in the guinea pig. , 1996, Annals of nutrition & metabolism.

[85]  C. Remé,et al.  Dietary deficiency of N-3 fatty acids alters rhodopsin content and function in the rat retina. , 1994, Investigative ophthalmology & visual science.

[86]  W. Gordon,et al.  Docosahexaenoic acid supply to the retina and its conservation in photoreceptor cells by active retinal pigment epithelium-mediated recycling. , 1994, World review of nutrition and dietetics.

[87]  E N Pugh,et al.  Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction. , 1994, Investigative ophthalmology & visual science.

[88]  S. Clarke,et al.  Dietary polyunsaturated fatty acid regulation of gene transcription. , 1994, Annual review of nutrition.

[89]  R. E. Anderson,et al.  The accretion of docosahexaenoic acid in the retina. , 1994, World review of nutrition and dietetics.

[90]  E. Birch,et al.  Breast-feeding and optimal visual development. , 1993, Journal of pediatric ophthalmology and strabismus.

[91]  W. Gordon,et al.  Docosahexaenoic acid uptake and metabolism in photoreceptors: retinal conservation by an efficient retinal pigment epithelial cell-mediated recycling process. , 1992, Advances in experimental medicine and biology.

[92]  Robert E Anderson,et al.  Chapter 4 Effects of light history on the rat retina , 1991 .

[93]  R. Hansen,et al.  The quantity of rhodopsin in young human eyes. , 1991, Current eye research.

[94]  G. Spiller,et al.  New protective roles for selected nutrients , 1989 .

[95]  C. Curtain,et al.  Physiological regulation of membrane fluidity , 1988 .

[96]  E A Dratz,et al.  The molecular mechanism of visual excitation and its relation to the structure and composition of the rod outer segment. , 1987, Annual review of physiology.

[97]  N. Millichamp,et al.  Retinal function in rats and guinea-pigs reared on diets low in essential fatty acids and supplemented with linoleic or linolenic acids. , 1986, Annals of nutrition & metabolism.

[98]  L. Stryer,et al.  Cyclic GMP cascade of vision. , 1986, Annual review of neuroscience.

[99]  P. Witkovsky,et al.  Chapter 7 Neuron — Glia interaction in the brain and retina , 1985 .

[100]  Robert A. Linsenmeier,et al.  Chapter 2 Retinal pigment epithelial cell contributions to the electroretinogram and electrooculogram , 1985 .

[101]  S. Fliesler,et al.  Chemistry and metabolism of lipids in the vertebrate retina. , 1983, Progress in lipid research.

[102]  P. Quinn The fluidity of cell membranes and its regulation. , 1981, Progress in biophysics and molecular biology.

[103]  J. Nicholls From neuron to brain , 1976 .

[104]  R. E. Anderson,et al.  Lipids of ocular tissues. IX. The phospholipids of frog photoreceptor membranes. , 1974, Vision research.