Equivalence of Systematic Linear Data Structures and Matrix Rigidity

Recently, Dvir, Golovnev, and Weinstein have shown that sufficiently strong lower bounds for linear data structures would imply new bounds for rigid matrices. However, their result utilizes an algorithm that requires an $NP$ oracle, and hence, the rigid matrices are not explicit. In this work, we derive an equivalence between rigidity and the systematic linear model of data structures. For the $n$-dimensional inner product problem with $m$ queries, we prove that lower bounds on the query time imply rigidity lower bounds for the query set itself. In particular, an explicit lower bound of $\omega\left(\frac{n}{r}\log m\right)$ for $r$ redundant storage bits would yield better rigidity parameters than the best bounds due to Alon, Panigrahy, and Yekhanin. We also prove a converse result, showing that rigid matrices directly correspond to hard query sets for the systematic linear model. As an application, we prove that the set of vectors obtained from rank one binary matrices is rigid with parameters matching the known results for explicit sets. This implies that the vector-matrix-vector problem requires query time $\Omega(n^{3/2}/r)$ for redundancy $r \geq \sqrt{n}$ in the systematic linear model, improving a result of Chakraborty, Kamma, and Larsen. Finally, we prove a cell probe lower bound for the vector-matrix-vector problem in the high error regime, improving a result of Chattopadhyay, Koucký, Loff, and Mukhopadhyay.

[1]  Erik D. Demaine,et al.  Logarithmic Lower Bounds in the Cell-Probe Model , 2005, SIAM J. Comput..

[2]  Noga Alon,et al.  Deterministic Approximation Algorithms for the Nearest Codeword Problem , 2009, APPROX-RANDOM.

[3]  Noga Alon,et al.  On Rigid Matrices and U-Polynomials , 2013, 2013 IEEE Conference on Computational Complexity.

[4]  Mikkel Thorup,et al.  Higher Lower Bounds for Near-Neighbor and Further Rich Problems , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[5]  Emanuele Viola Lower bounds for data structures with space close to maximum imply circuit lower bounds , 2018, Electron. Colloquium Comput. Complex..

[6]  Emanuele Viola,et al.  On the Power of Small-Depth Computation , 2009, Found. Trends Theor. Comput. Sci..

[7]  Satyanarayana V. Lokam Complexity Lower Bounds using Linear Algebra , 2009, Found. Trends Theor. Comput. Sci..

[8]  Vojtech Rödl,et al.  Boolean Circuits, Tensor Ranks, and Communication Complexity , 1997, SIAM J. Comput..

[9]  L. Valiant Why is Boolean complexity theory difficult , 1992 .

[10]  D DemaineErik,et al.  Logarithmic Lower Bounds in the Cell-Probe Model , 2006 .

[11]  Jirí Matousek,et al.  Geometric range searching , 1994, CSUR.

[12]  Michael E. Saks,et al.  The cell probe complexity of dynamic data structures , 1989, STOC '89.

[13]  Henning Wunderlich On a Theorem of Razborov , 2011, computational complexity.

[14]  Kasper Green Larsen,et al.  Faster Online Matrix-Vector Multiplication , 2016, SODA.

[15]  Zeev Dvir,et al.  Fe b 20 19 Static Data Structure Lower Bounds Imply Rigidity , 2019 .

[16]  Kasper Green Larsen The cell probe complexity of dynamic range counting , 2011, STOC '12.

[17]  Arkadev Chattopadhyay,et al.  Simulation beats richness: new data-structure lower bounds , 2018, Electron. Colloquium Comput. Complex..

[18]  Kasper Green Larsen Higher Cell Probe Lower Bounds for Evaluating Polynomials , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[19]  Kasper Green Larsen,et al.  Tight cell probe bounds for succinct Boolean matrix-vector multiplication , 2017, STOC.

[20]  Peter Bro Miltersen Lower bounds for union-split-find related problems on random access machines , 1994, STOC '94.

[21]  Peter Bro Miltersen,et al.  On data structures and asymmetric communication complexity , 1994, STOC '95.

[22]  Amir Yehudayoff,et al.  Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..

[23]  Mihai Pa caron,et al.  Unifying the Landscape of Cell-Probe Lower Bounds , 2011 .

[24]  Georg Schnitger,et al.  Min-rank conjecture for log-depth circuits , 2011, J. Comput. Syst. Sci..

[25]  Richard Ryan Williams,et al.  Probabilistic rank and matrix rigidity , 2016, STOC.

[26]  Leslie G. Valiant,et al.  Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.

[27]  Rina Panigrahy,et al.  Lower Bounds on Near Neighbor Search via Metric Expansion , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[28]  Joshua Brody,et al.  Adapt or Die: Polynomial Lower Bounds for Non-Adaptive Dynamic Data Structures , 2015, Theory Comput..

[29]  Daniel A. Spielman,et al.  A Remark on Matrix Rigidity , 1997, Inf. Process. Lett..

[30]  Joel Friedman,et al.  A note on matrix rigidity , 1993, Comb..

[31]  Andrew Chi-Chih Yao,et al.  Should Tables Be Sorted? , 1981, JACM.

[32]  Zeev Dvir,et al.  Matrix rigidity and the Croot-Lev-Pach lemma , 2017, Theory Comput..

[33]  Zeev Dvir,et al.  Fourier and circulant matrices are not rigid , 2019, CCC.

[34]  Peter Bro Miltersen,et al.  The Cell Probe Complexity of Succinct Data Structures , 2003 .

[35]  Miklós Ajtai,et al.  A lower bound for finding predecessors in Yao's cell probe model , 1988, Comb..

[36]  Monika Henzinger,et al.  Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture , 2015, STOC.

[37]  Pankaj K. Agarwal,et al.  Geometric Range Searching and Its Relatives , 2007 .

[38]  Henry Corrigan-Gibbs,et al.  The Function-Inversion Problem: Barriers and Opportunities , 2019, Electron. Colloquium Comput. Complex..

[39]  Allan Grønlund Jørgensen,et al.  New Unconditional Hardness Results for Dynamic and Online Problems , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[40]  Kasper Green Larsen,et al.  Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds , 2017, Electron. Colloquium Comput. Complex..