Molecular basis of the VHL hereditary cancer syndrome

The von Hippel–Lindau hereditary cancer syndrome was first described about 100 years ago. The unusual clinical features of this disorder predicted a role for the von Hippel–Lindau gene (VHL) in the oxygen-sensing pathway. Indeed, recent studies of this gene have helped to decipher how cells sense changes in oxygen availability, and have revealed a previously unappreciated role of prolyl hydroxylation in intracellular signalling. These studies, in turn, are laying the foundation for the treatment of a diverse set of disorders, including cancer, myocardial infarction and stroke.

[1]  K. Plate,et al.  Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas. , 1995, Cancer research.

[2]  Y. Nakamura,et al.  Common regions of deletion on chromosomes 5q, 6q, and 10q in renal cell carcinoma. , 1991, Cancer research.

[3]  A. Harris,et al.  Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Ivan,et al.  Structure of an HIF-1α-pVHL Complex: Hydroxyproline Recognition in Signaling , 2002, Science.

[5]  W. Kaelin,et al.  Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. , 1999, Science.

[6]  S. White,et al.  Dynamic, site-specific interaction of hypoxia-inducible factor-1alpha with the von Hippel-Lindau tumor suppressor protein. , 2001, Cancer research.

[7]  S. Elledge,et al.  Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. , 1999, Science.

[8]  P. Carmeliet,et al.  Conditional switching of VEGF provides new insights into adult neovascularization and pro‐angiogenic therapy , 2002, The EMBO journal.

[9]  V. Sukhatme,et al.  Transforming Growth Factor α Is a Target for the Von Hippel-Lindau Tumor Suppressor , 1998 .

[10]  C. Schofield,et al.  Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. , 1999, Current opinion in structural biology.

[11]  K. Plate,et al.  Up-Regulation of Vascular Endothelial Growth Factor in Stromal Cells of Hemangioblastomas Is Correlated with Up-Regulation of the Transcription Factor HRF/HIF-2α , 1998 .

[12]  R. Klausner,et al.  Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  W. Linehan,et al.  Detection of von Hippel-Lindau disease gene mutations in paraffin-embedded sporadic renal cell carcinoma specimens. , 1996, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[14]  R. Burk,et al.  A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  E. Keshet,et al.  Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Klausner,et al.  Transcription-Dependent Nuclear-Cytoplasmic Trafficking Is Required for the Function of the von Hippel-Lindau Tumor Suppressor Protein , 1999, Molecular and Cellular Biology.

[17]  R. Burk,et al.  Endoplasmic reticulum/cytosolic localization of von Hippel‐Lindau gene products is mediated by a 64–amino acid region , 2001, International journal of cancer.

[18]  W. Linehan,et al.  Germline mutations in the Von Hippel‐Lindau disease (VHL) gene in families from North America, Europe, and Japan , 1996, Human mutation.

[19]  L. Poellinger,et al.  Mechanism of regulation of the hypoxia‐inducible factor‐1α by the von Hippel‐Lindau tumor suppressor protein , 2000, The EMBO journal.

[20]  W. Linehan,et al.  Germline mutations in the von Hippel–Lindau disease tumor suppressor gene: Correlations with phenotype , 1995, Human mutation.

[21]  R. Klausner,et al.  Role of transforming growth factor-alpha in von Hippel--Lindau (VHL)(-/-) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  H. Neumann,et al.  Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel-Lindau disease. , 1993, The New England journal of medicine.

[23]  A. Harris,et al.  Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumour suppressor by mRNA differential expression profiling , 2000, Oncogene.

[24]  J. Brooks,et al.  Mutations of the VHL tumour suppressor gene in renal carcinoma , 1994, Nature Genetics.

[25]  R Stearman,et al.  Studying interactions of four proteins in the yeast two-hybrid system: structural resemblance of the pVHL/elongin BC/hCUL-2 complex with the ubiquitin ligase complex SKP1/cullin/F-box protein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  G. Reifenberger,et al.  Coexpression of transforming growth factor-alpha and épidermal growth factor receptor in capillary hemangioblastomas of the central nervous system. , 1995, The American journal of pathology.

[27]  T. Shuin,et al.  Somatic mutations of the von Hippel-Lindau tumor suppressor gene in sporadic central nervous system hemangioblastomas. , 1994, Cancer research.

[28]  B. Seizinger,et al.  Germ-line mutations in the von Hippel-Lindau tumor-suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadic renal cell carcinoma. , 1994, American journal of human genetics.

[29]  Y Kubota,et al.  Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. , 1994, Cancer research.

[30]  Y. Nakamura,et al.  Allelotype of renal cell carcinoma. , 1991, Cancer research.

[31]  D. Fabbro,et al.  Protein tyrosine kinase inhibitors: new treatment modalities? , 2002, Current opinion in pharmacology.

[32]  H. Grossniklaus,et al.  Retinal Hemangioblastoma: A Histologic, Immunohistochemical, and Ultrastructural Evaluation , 1992 .

[33]  Michael I. Wilson,et al.  C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation , 2001, Cell.

[34]  N. Bander,et al.  Mouse-human chimeric anti-epidermal growth factor receptor antibody C225 inhibits the growth of human renal cell carcinoma xenografts in nude mice. , 1998, Clinical cancer research : an official journal of the American Association for Cancer Research.

[35]  M. Bar,et al.  Sporadic phaeochromocytomas are rarely associated with germline mutations in the von Hippel‐Lindau and RET genes , 1997, Clinical endocrinology.

[36]  P. Bugert,et al.  Duplication of an approximately 1.5 Mb DNA segment at chromosome 5q22 indicates the locus of a new tumour gene in nonpapillary renal cell carcinomas , 1997, Oncogene.

[37]  K. Plate,et al.  Putative Control of Angiogenesis in Hemangioblastomas by the von Hippel‐Lindau Tumor Suppressor Gene , 1997, Journal of neuropathology and experimental neurology.

[38]  W. Kaelin,et al.  pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Gibbs Mechanism-based target identification and drug discovery in cancer research. , 2000, Science.

[40]  K. Kivirikko,et al.  Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. , 1998, Matrix biology : journal of the International Society for Matrix Biology.

[41]  M. Ivan,et al.  HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing , 2001, Science.

[42]  R. Klausner,et al.  The von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. M. Arbeit,et al.  Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha. , 2001, Genes & development.

[44]  W. Kaelin,et al.  Diverse Effects of Mutations in Exon II of the von Hippel-Lindau (VHL) Tumor Suppressor Gene on the Interaction of pVHL with the Cytosolic Chaperonin and pVHL-Dependent Ubiquitin Ligase Activity , 2002, Molecular and Cellular Biology.

[45]  R. Conaway,et al.  Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[46]  N. Minato,et al.  The von Hippel-Lindau Tumor Suppressor Protein Mediates Ubiquitination of Activated Atypical Protein Kinase C* , 2001, The Journal of Biological Chemistry.

[47]  Kou-Gi Shyu,et al.  Angiogenesis Is Induced in a Rabbit Model of Hindlimb Ischemia by Naked DNA Encoding an HIF-1&agr;/VP16 Hybrid Transcription Factor , 2000 .

[48]  J. Gnarra,et al.  Identification of the von Hippel-Lindau disease tumor suppressor gene. , 1993, Science.

[49]  R. Deshaies SCF and Cullin/Ring H2-based ubiquitin ligases. , 1999, Annual review of cell and developmental biology.

[50]  Sporadic pheochromocytomas are rarely associated with germline mutations in the vhl tumor suppressor gene or the ret protooncogene. , 1997, The Journal of clinical endocrinology and metabolism.

[51]  Stephen Lee,et al.  Ran-mediated Nuclear Export of the von Hippel-Lindau Tumor Suppressor Protein Occurs Independently of Its Assembly with Cullin-2* , 2000, The Journal of Biological Chemistry.

[52]  M. Emmert-Buck,et al.  von Hippel-Lindau gene deletion detected in the stromal cell component of a cerebellar hemangioblastoma associated with von Hippel-Lindau disease. , 1997, Human pathology.

[53]  S. Richard,et al.  Paradoxical secondary polycythemia in von Hippel-Lindau patients treated with anti-vascular endothelial growth factor receptor therapy. , 2002, Blood.

[54]  Stephen J. Elledge,et al.  SKP1 Connects Cell Cycle Regulators to the Ubiquitin Proteolysis Machinery through a Novel Motif, the F-Box , 1996, Cell.

[55]  C. Eng,et al.  Differential genetic alterations in von Hippel-Lindau syndrome-associated and sporadic pheochromocytomas. , 2000, The Journal of clinical endocrinology and metabolism.

[56]  R. Jaenisch,et al.  Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Kibel,et al.  Tumour suppression by the human von Hippel-Lindau gene product , 1995, Nature Medicine.

[58]  W. Linehan,et al.  Allelic deletions of the VHL gene detected in multiple microscopic clear cell renal lesions in von Hippel-Lindau disease patients. , 1996, The American journal of pathology.

[59]  W. Linehan,et al.  Improved detection of germline mutations in the von Hippel‐Lindau disease tumor suppressor gene , 1998, Human mutation.

[60]  J. M. Arbeit,et al.  Hypoxia-inducible Factor-1α Is a Positive Factor in Solid Tumor Growth , 2000 .

[61]  L. Liotta,et al.  A microdissection technique for archival DNA analysis of specific cell populations in lesions < 1 mm in size. , 1995, The American journal of pathology.

[62]  Eamonn R. Maher,et al.  Hypoxia Inducible Factor-α Binding and Ubiquitylation by the von Hippel-Lindau Tumor Suppressor Protein* , 2000, The Journal of Biological Chemistry.

[63]  Lager Dj,et al.  The expression of epidermal growth factor receptor and transforming growth factor alpha in renal cell carcinoma. , 1994 .

[64]  M. Gstaiger,et al.  The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. , 1999, Genes & development.

[65]  W. Kaelin,et al.  Regulation of Hypoxia-Inducible mRNAs by the von Hippel-Lindau Tumor Suppressor Protein Requires Binding to Complexes Containing Elongins B/C and Cul2 , 1998, Molecular and Cellular Biology.

[66]  T. Shuin,et al.  Direct interaction of the beta-domain of VHL tumor suppressor protein with the regulatory domain of atypical PKC isotypes. , 1999, Biochemical and biophysical research communications.

[67]  Fan,et al.  Cellular proteins that bind the von Hippel-Lindau disease gene product: mapping of binding domains and the effect of missense mutations. , 1995, Cancer research.

[68]  G. Merlino,et al.  Renal cysts in transgenic mice expressing transforming growth factor-alpha. , 1994, The Journal of laboratory and clinical medicine.

[69]  W. Kaelin,et al.  Expression pattern of the von Hippel-Lindau protein in human tissues. , 1996, Laboratory investigation; a journal of technical methods and pathology.

[70]  D. Louis,et al.  The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. , 1998, Molecular cell.

[71]  S. White,et al.  HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[72]  R. Klausner,et al.  The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Y Chen,et al.  Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. , 2000, Kidney international.

[74]  R. Kuwano,et al.  Expression of vascular endothelial growth factor in capillary hemangioblastoma. , 1993, Biochemical and biophysical research communications.

[75]  J. Haines,et al.  Von Hippel–Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma , 1988, Nature.

[76]  D. Mukhopadhyay,et al.  Activation of Sp1-mediated Vascular Permeability Factor/Vascular Endothelial Growth Factor Transcription Requires Specific Interaction with Protein Kinase C ζ* , 1998, The Journal of Biological Chemistry.

[77]  D. Halley,et al.  Germline mutations in the Von Hippel-Lindau ( VHL ) gene , 2000 .

[78]  M. Gorospe,et al.  Protective Function of von Hippel-Lindau Protein against Impaired Protein Processing in Renal Carcinoma Cells , 1999, Molecular and Cellular Biology.

[79]  Campello,et al.  Haemangioblastoma of the central nervous system in von Hippel–Lindau disease , 1998, Journal of internal medicine.

[80]  Martin S. Taylor,et al.  Characterization and comparative analysis of the EGLN gene family. , 2001, Gene.

[81]  S. McKnight,et al.  Oxygen Sensing Gets a Second Wind , 2002, Science.

[82]  A. Kibel,et al.  Immunostaining of the von Hippel-Lindau gene product in normal and neoplastic human tissues. , 1997, Human pathology.

[83]  Michael I. Wilson,et al.  Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation , 2001, Science.

[84]  M. Greenberg,et al.  E2F-1 Functions in Mice to Promote Apoptosis and Suppress Proliferation , 1996, Cell.

[85]  A. Bauer,et al.  Endogenous von Hippel-Lindau tumor suppressor protein regulates catecholaminergic phenotype in PC12 cells. , 2002, Cancer research.

[86]  C. Wykoff,et al.  The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis , 1999, Nature.

[87]  R. Hofstra,et al.  Extensive mutation scanning of RET in sporadic medullary thyroid carcinoma and of RET and VHL in sporadic pheochromocytoma reveals involvement of these genes in only a minority of cases. , 1996, The Journal of clinical endocrinology and metabolism.

[88]  L. Hurst,et al.  Comparative sequence analysis of the VHL tumor suppressor gene. , 2000, Genomics.

[89]  R. Klausner,et al.  The von Hippel-Lindau Tumor Suppressor Gene Inhibits Hepatocyte Growth Factor/Scatter Factor-Induced Invasion and Branching Morphogenesis in Renal Carcinoma Cells , 1999, Molecular and Cellular Biology.

[90]  Christopher J Schofield,et al.  Hypoxia-inducible Factor (HIF) Asparagine Hydroxylase Is Identical to Factor Inhibiting HIF (FIH) and Is Related to the Cupin Structural Family* , 2002, The Journal of Biological Chemistry.

[91]  S. Ben‐Sasson,et al.  Anticancer drug targets: approaching angiogenesis. , 1999, The Journal of clinical investigation.

[92]  B. Ponder,et al.  Genetic predisposition to phaeochromocytoma: analysis of candidate genes GDNF, RET and VHL. , 1997, Human molecular genetics.

[93]  W. Kaelin,et al.  von Hippel-Lindau gene-mediated growth suppression and induction of differentiation in renal cell carcinoma cells grown as multicellular tumor spheroids. , 1998, Cancer research.

[94]  J. Herman,et al.  Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[95]  J. Pouysségur,et al.  Identification of Alternative Spliced Variants of Human Hypoxia-inducible Factor-1α* , 2000, The Journal of Biological Chemistry.

[96]  R. Klausner,et al.  Characterization of the VHL tumor suppressor gene product: localization, complex formation, and the effect of natural inactivating mutations. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[97]  C. Little,et al.  Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[98]  M. Ivan,et al.  Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel–Lindau protein , 2000, Nature Cell Biology.

[99]  T. Shuin,et al.  Germline and somatic mutations in von Hippel-Lindau disease gene and its significance in the development of kidney cancer. , 1999, Contributions to nephrology.

[100]  D. Mukhopadhyay,et al.  The von Hippel-Lindau Gene Product Inhibits Vascular Permeability Factor/Vascular Endothelial Growth Factor Expression in Renal Cell Carcinoma by Blocking Protein Kinase C Pathways* , 1997, The Journal of Biological Chemistry.

[101]  N. Sang,et al.  Carboxyl-Terminal Transactivation Activity of Hypoxia-Inducible Factor 1α Is Governed by a von Hippel-Lindau Protein-Independent, Hydroxylation-Regulated Association with p300/CBP , 2002, Molecular and Cellular Biology.

[102]  S. McKnight,et al.  A Conserved Family of Prolyl-4-Hydroxylases That Modify HIF , 2001, Science.

[103]  G. Tortora,et al.  Cooperative inhibition of renal cancer growth by anti-epidermal growth factor receptor antibody and protein kinase A antisense oligonucleotide. , 1998, Journal of the National Cancer Institute.

[104]  R. Hammer,et al.  The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. , 1998, Genes & development.

[105]  A. Kibel,et al.  Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C , 1995, Science.

[106]  Jessica Lo,et al.  HIF‐1α is required for solid tumor formation and embryonic vascularization , 1998 .

[107]  B. Seizinger,et al.  Alternate choice of initiation codon produces a biologically active product of the von Hippel Lindau gene with tumor suppressor activity , 1999, Oncogene.

[108]  C. Junien,et al.  Mutations of the VHL gene in sporadic renal cell carcinoma: Definition of a risk factor for VHL patients to develop an RCC , 1999, Human mutation.

[109]  Stephen Lee,et al.  Role of Exon 2-encoded β-Domain of the von Hippel-Lindau Tumor Suppressor Protein* , 2001, The Journal of Biological Chemistry.

[110]  D. Mukhopadhyay,et al.  An important von Hippel-Lindau tumor suppressor domain mediates Sp1-binding and self-association. , 1999, Biochemical and biophysical research communications.

[111]  G. Martiny-Baron,et al.  Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. , 2000, Cancer research.

[112]  A. Lindau ZUR FRAGE DER ANGIOMATOSIS RETINæ UND IHRER HIRNKOMPLIKATIONEN , 1926 .

[113]  P. Buttrick,et al.  Inhibition of Collagen Synthesis With Prolyl 4-Hydroxylase Inhibitor Improves Left Ventricular Function and Alters the Pattern of Left Ventricular Dilatation After Myocardial Infarction , 2001, Circulation.

[114]  A. Vortmeyer,et al.  VHL gene deletion and enhanced VEGF gene expression detected in the stromal cells of retinal angioma. , 1999, Archives of ophthalmology.

[115]  D. Duan,et al.  Inhibition of transcription elongation by the VHL tumor suppressor protein , 1995, Science.

[116]  R. Klausner,et al.  Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[117]  L. Schmidt,et al.  Suppression of growth of renal carcinoma cells by the von Hippel-Lindau tumor suppressor gene. , 1995, Cancer research.

[118]  F. Sánchez‐Madrid,et al.  Role of the von Hippel-Lindau tumor suppressor gene in the formation of beta1-integrin fibrillar adhesions. , 2002, Cancer research.

[119]  Richard D Klausner,et al.  The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. , 2002, Cancer cell.

[120]  D. Livingston,et al.  Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1α , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[121]  R. Greenberg,et al.  Comprehensive allelotyping of human renal cell carcinomas using microsatellite DNA probes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[122]  H. Dyson,et al.  Structural basis for Hif-1α/CBP recognition in the cellular hypoxic response , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[123]  G. Martiny-Baron,et al.  Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. , 1996, Cancer research.

[124]  L. Aiello,et al.  Rapid and durable recovery of visual function in a patient with von hippel-lindau syndrome after systemic therapy with vascular endothelial growth factor receptor inhibitor su5416. , 2002, Ophthalmology.

[125]  M. Ivan,et al.  von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. , 2001, Human molecular genetics.

[126]  D. Peet,et al.  Asparagine Hydroxylation of the HIF Transactivation Domain: A Hypoxic Switch , 2002, Science.

[127]  J. Strauchen Germ-line mutations in nonsyndromic pheochromocytoma. , 2002, The New England journal of medicine.

[128]  L. Claesson‐Welsh,et al.  Expression of Growth Factors and Growth Factor Receptors in Capillary Hemangioblastoma , 1996, Journal of neuropathology and experimental neurology.

[129]  Mirna Lechpammer,et al.  Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. , 2002, Cancer cell.

[130]  M. Ferguson-Smith,et al.  Molecular genetic investigation of sporadic renal cell carcinoma: analysis of allele loss on chromosomes 3p, 5q, 11p, 17 and 22. , 1994, British Journal of Cancer.

[131]  V. Thulasiraman,et al.  Formation of the VHL-elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. , 1999, Molecular cell.

[132]  R. Burk,et al.  VHL Induces Renal Cell Differentiation and Growth Arrest through Integration of Cell-Cell and Cell-Extracellular Matrix Signaling , 2001, Molecular and Cellular Biology.

[133]  D. Mukhopadhyay,et al.  The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity , 1997, Molecular and cellular biology.

[134]  M. Ferguson-Smith,et al.  Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. , 1994, Human molecular genetics.

[135]  G. Semenza,et al.  Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. , 1999, Annual review of cell and developmental biology.

[136]  Christopher J. Schofield,et al.  Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL , 2002, Nature.

[137]  R. Conaway,et al.  von Hippel-Lindau Protein Induces Hypoxia-regulated Arrest of Tyrosine Hydroxylase Transcript Elongation in Pheochromocytoma Cells* , 1999, The Journal of Biological Chemistry.

[138]  W. Kaelin,et al.  Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.