Large Periods Nearly de Bruijn FCSR Sequences

Recently, a new class of feedback shift registers (FCSRs) was introduced, based on algebra over the 2-adic numbers. The sequences generated by these registers have many algebraic properties similar to those generated by linear feedback shift registers. However, it appears to be significantly more difficult to find maximal period FCSR sequences. In this paper we exhibit a technique for easily finding FCSRs that generate nearly maximal period sequences. We further show that these sequence have excellent distributional properties. They are balanced, and nearly have the deBruijn property for distributions of subsequences.