A microporous metal-organic framework with rare lvt topology for highly selective C2H2/C2H4 separation at room temperature.

A new lvt-type metal-organic framework UTSA-60a with suitable pore channels and open metal sites has been developed for highly selective separation of C2H2/C2H4 at room temperature.

[1]  C. Tang,et al.  Supramolecular binding and separation of hydrocarbons within a functionalized porous metal-organic framework. , 2015, Nature chemistry.

[2]  Wei Zhou,et al.  Porous Metal-Organic Frameworks for Gas Storage and Separation: What, How, and Why? , 2014, The journal of physical chemistry letters.

[3]  H. Furukawa,et al.  Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. , 2014, Angewandte Chemie.

[4]  Zhijuan Zhang,et al.  High storage capacity and separation selectivity for C2 hydrocarbons over methane in the metal–organic framework Cu–TDPAT , 2014 .

[5]  Fei Wang,et al.  Porous anionic indium-organic framework with enhanced gas and vapor adsorption and separation ability. , 2014, ChemSusChem.

[6]  Zhangjing Zhang,et al.  Perspective of microporous metal–organic frameworks for CO2 capture and separation , 2014 .

[7]  G. Qian,et al.  Methane storage in metal-organic frameworks. , 2014, Chemical Society reviews.

[8]  Banglin Chen,et al.  Multifunctional metal-organic frameworks constructed from meta-benzenedicarboxylate units. , 2014, Chemical Society reviews.

[9]  R. Krishna,et al.  Separating xylene isomers by commensurate stacking of p-xylene within channels of MAF-X8. , 2014, Angewandte Chemie.

[10]  R. Krishna,et al.  The adsorption and simulated separation of light hydrocarbons in isoreticular metal-organic frameworks based on dendritic ligands with different aliphatic side chains. , 2014, Chemistry.

[11]  Amy J. Cairns,et al.  Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture , 2014, Nature Communications.

[12]  Jun Liu,et al.  Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. , 2014, Journal of the American Chemical Society.

[13]  B. Li,et al.  Microporous metal-organic frameworks for gas separation. , 2014, Chemistry, an Asian journal.

[14]  T. Yildirim,et al.  A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. , 2014, Journal of the American Chemical Society.

[15]  R. Krishna The Maxwell–Stefan description of mixture diffusion in nanoporous crystalline materials , 2014 .

[16]  Michael O'Keeffe,et al.  Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. , 2014, Chemical reviews.

[17]  T. Yildirim,et al.  A highly porous NbO type metal-organic framework constructed from an expanded tetracarboxylate. , 2014, Chemical communications.

[18]  J. Long,et al.  Hydrocarbon Separations in Metal–Organic Frameworks , 2014 .

[19]  Jian Zhang,et al.  Tuning a layer to a pillared-layer metal-organic framework for adsorption and separation of light hydrocarbons. , 2013, Chemical communications.

[20]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[21]  Cheng Wang,et al.  Metal-organic frameworks as a tunable platform for designing functional molecular materials. , 2013, Journal of the American Chemical Society.

[22]  J. Hupp,et al.  Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. , 2013, Journal of the American Chemical Society.

[23]  Nathaniel L Rosi,et al.  Design and preparation of a core-shell metal-organic framework for selective CO2 capture. , 2013, Journal of the American Chemical Society.

[24]  Rajamani Krishna,et al.  Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels , 2013, Science.

[25]  J. Long,et al.  Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn) , 2013 .

[26]  Randall Q. Snurr,et al.  Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases , 2013 .

[27]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[28]  Chao Zou,et al.  Assembly and post-modification of a metal-organic nanotube for highly efficient catalysis. , 2012, Journal of the American Chemical Society.

[29]  W. Zhou,et al.  Microporous metal-organic frameworks for storage and separation of small hydrocarbons. , 2012, Chemical communications.

[30]  Rui‐Biao Lin,et al.  Strong and dynamic CO2 sorption in a flexible porous framework possessing guest chelating claws. , 2012, Journal of the American Chemical Society.

[31]  Rajamani Krishna,et al.  Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons , 2012 .

[32]  Y. Chabal,et al.  Tuning the gate opening pressure of Metal-Organic Frameworks (MOFs) for the selective separation of hydrocarbons. , 2012, Journal of the American Chemical Society.

[33]  R. Krishna,et al.  Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions , 2012, Nature Communications.

[34]  R. Krishna,et al.  Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (M'MOFs) for their highly selective separation of chiral and achiral small molecules. , 2012, Journal of the American Chemical Society.

[35]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[36]  P. Feng,et al.  Development of composite inorganic building blocks for MOFs. , 2012, Journal of the American Chemical Society.

[37]  S. Nguyen,et al.  High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites. , 2012, Angewandte Chemie.

[38]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[39]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[40]  Yue‐Biao Zhang,et al.  Metal azolate frameworks: from crystal engineering to functional materials. , 2012, Chemical reviews.

[41]  Rachel B. Getman,et al.  Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. , 2012, Chemical reviews.

[42]  D. Olson,et al.  Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. , 2012, Chemical reviews.

[43]  W. Marsden I and J , 2012 .

[44]  S. Xiang,et al.  A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. , 2011, Journal of the American Chemical Society.

[45]  Rajamani Krishna,et al.  Screening metal–organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber , 2011 .

[46]  S. Nguyen,et al.  Kinetic separation of propene and propane in metal-organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios. , 2011, Journal of the American Chemical Society.

[47]  Qiang Xu,et al.  Porous metal-organic frameworks as platforms for functional applications. , 2011, Chemical communications.

[48]  K. Thomas,et al.  Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. , 2011, Nature communications.

[49]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[50]  Alex Shkotin Program structure , 2009, ArXiv.

[51]  Alexander J. Blake,et al.  High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. , 2009, Journal of the American Chemical Society.

[52]  C. Serre,et al.  Hydrocarbon adsorption in the flexible metal organic frameworks MIL-53(Al, Cr). , 2008, Journal of the American Chemical Society.

[53]  Hong‐Cai Zhou,et al.  A mesh-adjustable molecular sieve for general use in gas separation. , 2007, Angewandte Chemie.

[54]  Hong-Cai Zhou,et al.  Rationally designed micropores within a metal-organic framework for selective sorption of gas molecules. , 2007, Inorganic chemistry.

[55]  H. Freund,et al.  Acetylene and Ethylene Hydrogenation on Alumina Supported Pd-Ag Model Catalysts , 2006 .

[56]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[57]  Rajamani Krishna,et al.  Modelling issues in zeolite based separation processes , 2003 .

[58]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[59]  R. T. Yang,et al.  NiCl2 on γ-Alumina as Selective Adsorbents for Acetylene over Ethylene , 2000 .

[60]  W. K. Lewis,et al.  Vapor—Adsorbate Equilibrium. II. Acetylene—Ethylene on Activated Carbon and on Silica Gel , 1950 .