Three-dimensional hybrid materials of fish scale-like polyaniline nanosheet arrays on graphene oxide and carbon nanotube for high-performance ultracapacitors

[1]  J. Stejskal,et al.  The carbonization of granular polyaniline to produce nitrogen-containing carbon , 2011 .

[2]  M. C. Miras,et al.  Effect of chemical functionalization on the electrochemical properties of conducting polymers. Modification of polyaniline by diazonium ion coupling and subsequent reductive degradation , 2011 .

[3]  R. Young,et al.  The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. , 2011, Angewandte Chemie.

[4]  K. Hayashi,et al.  Template-free deposition of polyaniline nanostructures on solid substrates with horizontal orientation , 2011 .

[5]  R. Kaner,et al.  The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures , 2011 .

[6]  R. V. Salvatierra,et al.  Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. , 2011, Chemical communications.

[7]  Chao Gao,et al.  General Avenue to Individually Dispersed Graphene Oxide-Based Two-Dimensional Molecular Brushes by Free Radical Polymerization , 2011 .

[8]  A. Star,et al.  Chemical Sensing with Polyaniline Coated Single‐Walled Carbon Nanotubes , 2011, Advanced materials.

[9]  Jaroslav Stejskal,et al.  Polyaniline nanostructures and the role of aniline oligomers in their formation , 2010 .

[10]  J. Travas-sejdic,et al.  Theories of polyaniline nanostructure self-assembly: Towards an expanded, comprehensive Multi-Layer Theory (MLT) , 2010 .

[11]  X. Zhao,et al.  Growth of Polyaniline on Hollow Carbon Spheres for Enhancing Electrocapacitance , 2010 .

[12]  Dan Li,et al.  Graphene/Polyaniline Nanocomposite for Hydrogen Sensing , 2010 .

[13]  Jingjing Xu,et al.  Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. , 2010, ACS nano.

[14]  Q. Xue,et al.  Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. , 2010, ACS applied materials & interfaces.

[15]  Louis R. Nemzer,et al.  Enzyme Entrapment in Reprecipitated Polyaniline Nano- and Microparticles , 2010 .

[16]  Zhixiang Wei,et al.  Conducting Polyaniline Nanowire Arrays for High Performance Supercapacitors , 2010 .

[17]  Anran Liu,et al.  Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. , 2010, ACS nano.

[18]  Xin Wang,et al.  Effect of graphene oxide on the properties of its composite with polyaniline. , 2010, ACS applied materials & interfaces.

[19]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[20]  L. Brinson,et al.  Electrically Conductive “Alkylated” Graphene Paper via Chemical Reduction of Amine‐Functionalized Graphene Oxide Paper , 2010, Advanced materials.

[21]  D. Su,et al.  Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. , 2010, ChemSusChem.

[22]  Yanwu Zhu,et al.  Polymer Brushes via Controlled, Surface-Initiated Atom Transfer Radical Polymerization (ATRP) from Graphene Oxide. , 2010, Macromolecular rapid communications.

[23]  F. Wei,et al.  Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance , 2010 .

[24]  Kai Zhang,et al.  Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes , 2010 .

[25]  Zhixiang Wei,et al.  Conducting polymer nanowire arrays with enhanced electrochemical performance , 2010 .

[26]  Fei Wei,et al.  Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage , 2009 .

[27]  J. Fei,et al.  Controlled fabrication of polyaniline spherical and cubic shells with hierarchical nanostructures. , 2009, ACS nano.

[28]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[29]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[30]  Xujie Yang,et al.  Graphene oxide doped polyaniline for supercapacitors , 2009 .

[31]  U. Kolb,et al.  A simple approach towards one-dimensional mesoporous carbon with superior electrochemical capacitive activity. , 2009, Chemical communications.

[32]  Bin Wang,et al.  In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors , 2009 .

[33]  Huaihe Song,et al.  Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors , 2009 .

[34]  Hao Zhang,et al.  Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes , 2009 .

[35]  M. Fahlman,et al.  Comparative XPS surface study of polyaniline thin films , 2008 .

[36]  Lei Jiang,et al.  Rose-Like Microstructures of Polyaniline by Using a Simplified Template-Free Method under a High Relative Humidity , 2008 .

[37]  Y. Mai,et al.  Facile Synthesis of Hierarchical Polyaniline Nanostructures with Dendritic Nanofibers as Scaffolds , 2008 .

[38]  Hao Zhang,et al.  Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability , 2008 .

[39]  J. Stejskal,et al.  Oxidation of Aniline: Polyaniline Granules, Nanotubes, and Oligoaniline Microspheres , 2008 .

[40]  Markus Antonietti,et al.  High Electroactivity of Polyaniline in Supercapacitors by Using a Hierarchically Porous Carbon Monolith as a Support , 2007 .

[41]  Klaus Kern,et al.  Electronic transport properties of individual chemically reduced graphene oxide sheets. , 2007, Nano letters.

[42]  Norio Miura,et al.  Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors , 2006 .

[43]  H.Q. Li,et al.  Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance , 2006 .

[44]  Norio Miura,et al.  INFLUENCE OF THE MICROSTRUCTURE ON THE SUPERCAPACITIVE BEHAVIOR OF POLYANILINE/SINGLE-WALL CARBON NANOTUBE COMPOSITES , 2006 .

[45]  J. Jang,et al.  Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor , 2005 .

[46]  Chi-Chang Hu,et al.  The capacitive characteristics of supercapacitors consisting of activated carbon fabric–polyaniline composites in NaNO3 , 2004 .

[47]  Richard B. Kaner,et al.  Polyaniline Nanofiber Gas Sensors: Examination of Response Mechanisms , 2004 .

[48]  Ten-Chin Wen,et al.  Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors , 2003 .

[49]  Hsisheng Teng,et al.  Polyaniline-deposited porous carbon electrode for supercapacitor , 2003 .

[50]  Zhixiang Wei,et al.  Polyaniline Nanotubes Doped with Sulfonated Carbon Nanotubes Made Via a Self‐Assembly Process , 2003 .

[51]  F. Wei,et al.  The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor , 2002 .

[52]  O. Park,et al.  Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes , 2002 .

[53]  Yen-Wen Lin,et al.  Preparation and characterization of polyaniline/multi-walled carbon nanotube composites , 2005 .

[54]  Xiaohong Li,et al.  Well-dispersed single-walled carbon nanotube/polyaniline composite films , 2003 .