A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT.

Daniel C. M. Palumbo | Michael F. Wondrak | Chih-Wei L. Huang | P. K. Leung | Alexander W. Raymond | Zhiqiang Shen | K. Souccar | H. Falcke | T. Lauer | K. Bouman | G. Desvignes | S. Ikeda | B. Benson | J. Carlstrom | D. Michalik | A. Nadolski | D. James | P. Koch | L. Rezzolla | L. Lehner | K. Menten | R. Neri | P. Ho | L. Blackburn | J. Cordes | E. Ros | J. Algaba | Sang-Sung Lee | M. Kino | S. Trippe | Jongho Park | Guangyao Zhao | D. Byun | M. Gurwell | Jae-Young Kim | P. Galison | M. Hecht | C. Gammie | N. Patel | M. Inoue | Aviad Levis | F. Schloerb | E. Fomalont | Jongsoo Kim | K. Haworth | R. Narayan | Michael D. Johnson | S. Doeleman | J. Wardle | M. Turk | S. Chatterjee | L. Loinard | F. Roelofs | J. Weintroub | A. Rogers | R. Plambeck | R. Tilanus | P. Friberg | J. Moran | K. Young | M. Titus | D. Marrone | G. Bower | T. Krichbaum | A. Roy | V. Fish | K. Akiyama | A. Lobanov | A. Broderick | R. Blundell | M. Honma | T. Oyama | J. SooHoo | F. Tazaki | J. Dexter | A. Chael | K. Asada | C. Brinkerink | G. Crew | R. Gold | J. Zensus | D. Haggard | R. Karuppusamy | Kuo Liu | P. Torne | I. Martí-Vidal | N. Nagar | D. Hughes | Ming-Tang Chen | R. Hesper | I. Myserlis | M. Sasada | D. Pesce | P. Tiede | H. Pu | Dong-Jin Kim | A. Marscher | S. Jorstad | U. Pen | I. Bemmel | T. Crawford | D. Bintley | D. Ward-Thompson | B. Jannuzi | A. Young | K. Chatterjee | I. Natarajan | A. Alberdi | W. Alef | R. Azulay | A. Baczko | D. Ball | M. Baloković | J. Barrett | M. Bremer | R. Brissenden | S. Britzen | T. Bronzwaer | Chi-kwan Chan | Yongjun Chen | I. Cho | P. Christian | Yuzhu Cui | J. Davelaar | R. Deane | J. Dempsey | R. Eatough | R. Fraga-Encinas | C. Fromm | Roberto García | O. Gentaz | B. Georgiev | C. Goddi | K. Hada | S. Issaoun | M. Janssen | B. Jeter | Wu Jiang | T. Jung | M. Karami | T. Kawashima | G. Keating | M. Kettenis | Junhan Kim | J. Koay | S. Koyama | C. Kuo | Zhiyuan Li | M. Lindqvist | E. Liuzzo | W. Lo | C. Lonsdale | S. Markoff | S. Matsushita | L. Matthews | Y. Mizuno | I. Mizuno | K. Moriyama | M. Mościbrodzka | C. Müller | H. Nagai | G. Narayanan | C. Ni | A. Noutsos | H. Okino | H. Olivares | D. Palumbo | V. Piétu | A. PopStefanija | O. Porth | B. Prather | J. A. Preciado-López | V. Ramakrishnan | M. Rawlings | B. Ripperda | A. Roshanineshat | H. Rottmann | C. Ruszczyk | K. Rygl | S. Sánchez | T. Savolainen | K. Schuster | D. Small | B. Sohn | T. Trent | N. Wex | R. Wharton | M. Wielgus | G. Wong | Z. Younsi | Ye-Fei Yuan | U. Bach | S. Dzib | J. Farah | A. Gómez-Ruiz | C. Impellizzeri | J. Neilsen | M. Nowak | H. Parsons | Ignacio Ruiz | P. Yamaguchi | H. Ford | A. Cruz-Osorio | H. V. van Langevelde | J. Conway | Michael Kramer | R. Rao | D. V. van Rossum | K. Wiik | William T. Freeman | C. Kramer | M. Bauböck | A. Jiménez-Rosales | D. Yoon | G. Witzel | N. Marchili | H. Boyce | M. F. Wondrak | R. Lico | M. Laurentis | A. Nathanail | R. Emami | J. Schonfeld | A. Tetarenko | Vedant Dhruv | Angelo Ricarte | C. Romero-Cañizales | G. Musoke | Z. Li 李 | Richard Anantua | D. Sánchez-Argüelles | C. Ceccobello | R. Qiu | A. Fuentes | E. Traianou | Xiaopeng Cheng | He Sun | Greg Lindahl | Daeyoung Lee | Alejandro Mus | D. Broguiere | Y. Chen 陈 | Nicholas S. Conroy | W. Freeman | M. Gu 顾 | L. Ho 何 | Lei 磊 Huang 黄 | Wu 悟 Jiang 江 | Abhishek V. Joshi | Prashant Kocherlakota | Yutaro Kofuji | M. Lisakov | J. Liu 刘 | R. Lu 路 | J. Mao 毛 | Junghwan Oh | F. M. Pötzl | M. Sánchez-Portal | Kaushik Satapathy | Z. Shen 沈 | J. Vos | Q. Wu 吴 | Y. Yuan 袁 | Shuo Zhang | M. Laurentis | Sandra Bustamante | Y. Cui 崔 | S. Dougal | J. Gómez | D. Heumann | N. Bella | Santiago Navarro Fuentes | G. Paraschos | Shan-Shan 杉杉 Zhao 赵 | M. Nakamura | C. Goddi | J. Oh | G. Ortiz-Léon | Lijing Shao | H. Sun 孙 | J. Wagner | F. Yuan 袁 | Sandra Bustamante | J. Cordes | M. Wondrak | G. Bower | Jongho Park | R. García | M. Kramer | A. Raymond | P. Leung | J. SooHoo | L. Huang 黄 | Ruohan Lu | Qingwen Wu | David Ball | Shiro Ikeda | Aleksandar PopStefanija | W. T. Freeman | Olivier Gentaz | Britton Jeter | C. Kuo | Wen-Ping Lo | Kotaro Moriyama | Jorge A. Preciado-López | Hung-Yi Pu | Ramprasad Rao | Arash Roshanineshat | Daniel R. van Rossum | Doosoo Yoon | Ming-Tang Chen | Iván Martí-Vidal | Daeyoung Lee | Roberto García | D. Hughes | Kuo Liu | Nimesh Patel | B. Benson | A. I. Gómez-Ruiz | David H. Hughes | David J. James | G. Keating | Jongsoo Kim | James M. Moran | Ramesh Narayan | Alan Rogers | E. Ros | Shanwei Zhao | H. Falcke | Des Small | Makoto Inoue | Keiichi Asada | M. Bauböck | Ray Blundell | J. Gómez | Minfeng Gu | Michael H. Hecht | Luis C. Ho | Paul Ho | Dong-Jin Kim | Cheng-Yu Kuo | Jirong Mao | A. Mus | R. Neri | Michael A. Nowak | U. Pen | Lijing Shao | Matthew Turk | M. Wielgus | Feng Yuan | Richard Qiu | Jun Liu | Lei Huang | Luis Lehner | Junghwan Oh | Salvador Sánchez | Ken Young | Z. Shen | N. Patel | K. Asada | L. C. Ho | P. Ho | F. Pötzl | A. Levis | R. Anantua | R. Blundell | S. Bustamante | N. S. Conroy | M. H. Hecht | D. J. James | A. Joshi | Y. Kofuji | G. Lindahl | J. M. Moran | S. N. Fuentes | M. A. Nowak | I. Ruiz | K. Satapathy | M. Turk | J. Mao | F. Yuan | I. Martí-Vidal | J. Davelaar | J. Wagner | Shuo Zhang | M. Nowak | Luis Lehner

[1]  Daniel C. M. Palumbo,et al.  Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign , 2022, The Astrophysical Journal Letters.

[2]  Daniel C. M. Palumbo,et al.  Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI , 2022, The Astrophysical Journal Letters.

[3]  Daniel C. M. Palumbo,et al.  First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole , 2022, The Astrophysical Journal Letters.

[4]  Chih-Wei L. Huang,et al.  First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration , 2022, The Astrophysical Journal Letters.

[5]  Chih-Wei L. Huang,et al.  First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric , 2022, The Astrophysical Journal Letters.

[6]  Marcos Emir Moreno Nolasco,et al.  First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way , 2022, The Astrophysical Journal Letters.

[7]  Chih-Wei L. Huang,et al.  First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole , 2022, The Astrophysical Journal Letters.

[8]  Chih-Wei L. Huang,et al.  First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass , 2022, The Astrophysical Journal Letters.

[9]  C. Gammie,et al.  PATOKA: Simulating Electromagnetic Observables of Black Hole Accretion , 2022, 2202.11721.

[10]  A. Tchekhovskoy,et al.  Black Hole Flares: Ejection of Accreted Magnetic Flux through 3D Plasmoid-mediated Reconnection , 2021, The Astrophysical Journal Letters.

[11]  OUP accepted manuscript , 2022, Monthly Notices of the Royal Astronomical Society.

[12]  Michael D. Johnson,et al.  First Space-VLBI Observations of Sagittarius A* , 2021, The Astrophysical Journal Letters.

[13]  C. Gammie,et al.  iharm3D: Vectorized General Relativistic Magnetohydrodynamics , 2021, J. Open Source Softw..

[14]  Daniel C. M. Palumbo,et al.  Toward Determining the Number of Observable Supermassive Black Hole Shadows , 2021, The Astrophysical Journal.

[15]  Daniel C. M. Palumbo,et al.  Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope , 2021, 2102.05482.

[16]  A. Beloborodov,et al.  Radiative Turbulent Flares in Magnetically Dominated Plasmas , 2020, The Astrophysical Journal.

[17]  M. Gurwell,et al.  Rapid Variability of Sgr A* across the Electromagnetic Spectrum , 2020, 2011.09582.

[18]  Daniel C. M. Palumbo,et al.  Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope , 2020, The Astrophysical Journal.

[19]  Daniel C. M. Palumbo,et al.  Verification of Radiative Transfer Schemes for the EHT , 2020, The Astrophysical Journal.

[20]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[21]  E. Quataert,et al.  Ab Initio Horizon-scale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds , 2020, The Astrophysical Journal.

[22]  P. T. de Zeeuw,et al.  The flux distribution of Sgr A* , 2020, Astronomy & Astrophysics.

[23]  B. Ripperda,et al.  Magnetic Reconnection and Hot Spot Formation in Black Hole Accretion Disks , 2020, Astrophysical Journal.

[24]  C. Hesp,et al.  Observational signatures of disc and jet misalignment in images of accreting black holes , 2020, Monthly Notices of the Royal Astronomical Society.

[25]  E. Quataert,et al.  The Structure of Radiatively Inefficient Black Hole Accretion Flows , 2020, The Astrophysical Journal.

[26]  C. Gammie,et al.  The Shadow of a Spherically Accreting Black Hole , 2019, The Astrophysical Journal.

[27]  Jessica R. Lu,et al.  Relativistic redshift of the star S0-2 orbiting the Galactic Center supermassive black hole , 2019, Science.

[28]  L. Rezzolla,et al.  Constrained transport and adaptive mesh refinement in the Black Hole Accretion Code , 2019, Astronomy & Astrophysics.

[29]  S. Rabien,et al.  A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty , 2019, Astronomy & Astrophysics.

[30]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[31]  Chih-Wei L. Huang,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019, The Astrophysical Journal.

[32]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[33]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole , 2019, The Astrophysical Journal.

[34]  Kevin A. Dudevoir,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019, 1906.11239.

[35]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. III. Data Processing and Calibration , 2019, The Astrophysical Journal.

[36]  Daniel C. M. Palumbo,et al.  The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project , 2019, The Astrophysical Journal Supplement Series.

[37]  L. Blackburn,et al.  Calibration of ALMA as a Phased Array. ALMA Observations During the 2017 VLBI Campaign , 2019, Publications of the Astronomical Society of the Pacific.

[38]  Kazunori Akiyama,et al.  The Scattering and Intrinsic Structure of Sagittarius A* at Radio Wavelengths , 2018, The Astrophysical Journal.

[39]  C. Gammie,et al.  IPOLE - semi-analytic scheme for relativistic polarized radiative transport , 2017, 1712.03057.

[40]  A. Tchekhovskoy,et al.  How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes? , 2017, 1706.01533.

[41]  F. Foucart,et al.  grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories , 2017, 1702.01106.

[42]  H. Falcke,et al.  The black hole accretion code , 2016, 1611.09720.

[43]  E. Quataert,et al.  Evolution of accretion discs around a kerr black hole using extended magnetohydrodynamics , 2015, 1511.04445.

[44]  H. Falcke,et al.  GRMHD simulations of the jet in M87 , 2015 .

[45]  Charles F. Gammie,et al.  Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: Application to Sagittarius A , 2014, 1408.4743.

[46]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[47]  A. Tchekhovskoy,et al.  Numerical simulations of super-critical black hole accretion flows in general relativity , 2013, 1311.5900.

[48]  M. J. Reid,et al.  Microarcsecond Radio Astrometry , 2013, 1312.2871.

[49]  R. Narayan,et al.  Energy, momentum and mass outflows and feedback from thick accretion discs around rotating black holes , 2013, 1307.1143.

[50]  A. Tchekhovskoy,et al.  Semi-implicit scheme for treating radiation under M1 closure in general relativistic conservative fluid dynamics codes , 2012, 1212.5050.

[51]  J. Dexter,et al.  Tilted black hole accretion disc models of Sagittarius A*: time-variable millimetre to near-infrared emission , 2012, 1204.4454.

[52]  R. Lenzen,et al.  SOURCE-INTRINSIC NEAR-INFRARED PROPERTIES OF SGR A*: TOTAL INTENSITY MEASUREMENTS , 2012, 1208.5836.

[53]  Z. Younsi,et al.  General relativistic radiative transfer: formulation and emission from structured tori around black holes , 2012, 1207.4234.

[54]  R. Narayan,et al.  GRMHD simulations of magnetized advection‐dominated accretion on a non‐spinning black hole: role of outflows , 2012, 1206.1213.

[55]  Eric Agol,et al.  The size of the jet launching region in M87 , 2011, 1109.6011.

[56]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[57]  J. McClintock,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[58]  A. Loeb,et al.  Frequency-dependent Shift in the Image Centroid of the Black Hole at the Galactic Center as a Test of General Relativity , 2005, astro-ph/0508386.

[59]  G. T'oth,et al.  HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics , 2003, astro-ph/0301509.

[60]  R. Narayan,et al.  Three-dimensional MHD Simulations of Radiatively Inefficient Accretion Flows , 2003, astro-ph/0301402.

[61]  H. Falcke,et al.  Viewing the Shadow of the Black Hole at the Galactic Center , 1999, The Astrophysical journal.

[62]  Stefan J. Wagner,et al.  Intraday Variability in Quasars and BL LAC Objects , 1995 .

[63]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[64]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[65]  V. Moncrief,et al.  Relativistic fluid disks in orbit around Kerr black holes , 1976 .