Fourier analysis of optical spectra for characterization of regimes in passively mode-locked fiber lasers

We propose to use the fast Fourier transformation (FFT) to analyze the spectral data of passively mode-locked fiber lasers, with the purpose of characterizing and classifying the different pulsed regimes arising in these lasers. The results show temporal information at the sub-ps scale. Specially, in the Fourier domain, the spectra of bound solitons depict several solitons with relative phases of π/2 and close to 0, distributed into a window that extends beyond the limited span of the autocorrelator. Besides, the FFT amplitude traces can help to classify the multi-pulse regimes generated by the laser; in particular, the exponential decay of intensity in such amplitude traces can be a fingerprint of noise-like pulses. Furthermore, the amplitude traces show some modulation that we attribute to Kelly’s sidebands. The proposed technique allows examining spectra from a mode-locked fiber laser independently of the active medium or laser cavity configuration without the need to use ultrafast photo- detectors.

[1]  Nail Akhmediev,et al.  Roadmap to ultra-short record high-energy pulses out of laser oscillators , 2008 .

[2]  Zhi-Chao Luo,et al.  Dissipative rogue waves induced by soliton explosions in an ultrafast fiber laser. , 2016, Optics letters.

[3]  Rongqing Hui,et al.  Two-photon microscopy with wavelength switchable fiber laser excitation. , 2006, Optics express.

[4]  B. Ibarra-Escamilla,et al.  Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser , 2015 .

[5]  Yukitoshi Otani,et al.  Accuracy enhancement of dual rotating mueller matrix imaging polarimeter by diattenuation and retardance error calibration approach , 2017 .

[6]  Raymond J. Lanzafame Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale, 2nd ed., by Jean-Claude Diels and Wolfgang Rudolph:Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale, 2nd ed. , 2007 .

[7]  P. Grelu,et al.  Dissipative solitons for mode-locked lasers , 2012, Nature Photonics.

[8]  Yukitoshi Otani,et al.  Multiwavelength wavefront detection based on a lateral shear interferometer and polarization phase-shifting techniques. , 2018, Applied optics.

[9]  Jose L. Cruz,et al.  Statistical characterization of the internal structure of noiselike pulses using a nonlinear optical loop mirror , 2016 .

[10]  Yoonchan Jeong,et al.  Experimental spatio-temporal analysis on the shot-to-shot coherence and wave-packet formation in quasi-mode-locked regimes in an anomalous dispersion fiber ring cavity , 2017 .

[11]  Martin E. Fermann,et al.  High Power Femtosecond Fiber Chirped Pulse Amplification System for High Speed Micromachining , 2006 .

[12]  H Matsumoto,et al.  Frequency metrology with a turnkey all-fiber system. , 2004, Optics letters.

[13]  B. Jalali,et al.  Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules , 2017, Science.

[14]  Wei Li,et al.  Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser. , 2018, Optics express.

[15]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[16]  F. Mitschke,et al.  Experimental observation of temporal soliton molecules. , 2005, Physical review letters.

[17]  Xuewen Shu,et al.  Spatio-spectral dynamics of the pulsating dissipative solitons in a normal-dispersion fiber laser. , 2018, Optics letters.

[18]  Neil G. R. Broderick,et al.  Observation of soliton explosions in a passively mode-locked fiber laser , 2014, 1409.8373.

[19]  John Clowes,et al.  Next Generation Light Sources for Biomedical Applications , 2008 .

[20]  P. Grelu,et al.  Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules. , 2017, Physical review letters.

[21]  L. A. Rodríguez-Morales,et al.  Initial conditions for dissipative solitons in a strict polarization-controlled passively mode-locked Er-Fiber laser. , 2017, Optics express.

[22]  K. Goda,et al.  Dispersive Fourier transformation for fast continuous single-shot measurements , 2013, Nature Photonics.

[23]  D. Goldstein,et al.  Mueller matrix dual-rotating retarder polarimeter. , 1992, Applied optics.

[24]  Hermann A. Haus,et al.  Ultrashort-pulse fiber ring lasers , 1997 .

[25]  Zhongping Chen,et al.  Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm. , 2005, Optics letters.

[26]  P. Grelu,et al.  Soliton rains in a fiber laser: An experimental study , 2010 .

[27]  Youngchul Kwon,et al.  On the formation of noise-like pulses in fiber ring cavity configurations , 2014 .

[28]  O. Pottiez,et al.  Dual-wavelength quasi-mode-locked regimes of an Er-doped fiber ring laser , 2018, OSA Continuum.