On lattice point counting in Δ-modular polyhedra

Let a polyhedron $P$ be defined by one of the following ways: (i) $P = \{x \in R^n \colon A x \leq b\}$, where $A \in Z^{(n+k) \times n}$, $b \in Z^{(n+k)}$ and $rank\, A = n$; (ii) $P = \{x \in R_+^n \colon A x = b\}$, where $A \in Z^{k \times n}$, $b \in Z^{k}$ and $rank\, A = k$. And let all rank order minors of $A$ be bounded by $\Delta$ in absolute values. We show that the short rational generating function for the power series $$ \sum\limits_{m \in P \cap Z^n} x^m $$ can be computed with the arithmetic complexity $ O\left(T_{SNF}(d) \cdot d^{k} \cdot d^{\log_2 \Delta}\right), $ where $k$ and $\Delta$ are fixed, $d = \dim P$, and $T_{SNF}(m)$ is the complexity to compute the Smith Normal Form for $m \times m$ integer matrix. In particular, $d = n$ for the case (i) and $d = n-k$ for the case (ii). The simplest examples of polyhedra that meet conditions (i) or (ii) are the simplicies, the subset sum polytope and the knapsack or multidimensional knapsack polytopes. We apply these results to parametric polytopes, and show that the step polynomial representation of the function $c_P(y) = |P_{y} \cap Z^n|$, where $P_{y}$ is parametric polytope, can be computed by a polynomial time even in varying dimension if $P_{y}$ has a close structure to the cases (i) or (ii). As another consequence, we show that the coefficients $e_i(P,m)$ of the Ehrhart quasi-polynomial $$ \left| mP \cap Z^n\right| = \sum\limits_{j = 0}^n e_i(P,m)m^j $$ can be computed by a polynomial time algorithm for fixed $k$ and $\Delta$.

[1]  D. Gribanov The Flatness Theorem for Some Class of Polytopes and Searching an Integer Point , 2014 .

[2]  Alexander I. Barvinok Computing the Ehrhart quasi-polynomial of a rational simplex , 2006, Math. Comput..

[3]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[4]  Peter McMullen,et al.  Lattice invariant valuations on rational polytopes , 1978 .

[5]  Hiroshi Hirai,et al.  Counting Integral Points in Polytopes via Numerical Analysis of Contour Integration , 2020, Math. Oper. Res..

[6]  Vincent Loechner,et al.  Counting Integer Points in Parametric Polytopes Using Barvinok's Rational Functions , 2007, Algorithmica.

[7]  Jesús A. De Loera,et al.  Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..

[8]  Martin E. Dyer,et al.  On Barvinok's Algorithm for Counting Lattice Points in Fixed Dimension , 1997, Math. Oper. Res..

[9]  Jesús A. De Loera,et al.  The Support of Integer Optimal Solutions , 2017, SIAM J. Optim..

[10]  Jean B. Lasserre,et al.  An Alternative Algorithm for Counting Lattice Points in a Convex Polytope , 2005, Math. Oper. Res..

[11]  Ulrich Pferschy,et al.  Dynamic Programming Revisited: Improving Knapsack Algorithms , 1999, Computing.

[12]  András Sebö,et al.  An Introduction to Empty Lattice Simplices , 1999, IPCO.

[13]  S. I. Veselov,et al.  FPT-Algorithm for Computing the Width of a Simplex Given by a Convex Hull , 2019, Moscow University Computational Mathematics and Cybernetics.

[14]  Rico Zenklusen,et al.  A strongly polynomial algorithm for bimodular integer linear programming , 2017, STOC.

[15]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[16]  A. Barvinok,et al.  Short rational generating functions for lattice point problems , 2002, math/0211146.

[17]  Vincent Loechner,et al.  Parametric Analysis of Polyhedral Iteration Spaces , 1998, J. VLSI Signal Process..

[18]  Rico Zenklusen,et al.  On the Number of Distinct Rows of a Matrix with Bounded Subdeterminants , 2018, SIAM J. Discret. Math..

[19]  Dmitry V. Gribanov,et al.  On integer programming with bounded determinants , 2015, Optim. Lett..

[20]  Matthias Köppe,et al.  Computing Parametric Rational Generating Functions with a Primal Barvinok Algorithm , 2008, Electron. J. Comb..

[21]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[22]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[23]  Santosh S. Vempala,et al.  Geometric random edge , 2014, Math. Program..

[24]  Carsten Moldenhauer,et al.  Solving the Stable Set Problem in Terms of the Odd Cycle Packing Number , 2014, FSTTCS.

[25]  Joseph Paat,et al.  Most IPs with bounded determinants can be solved in polynomial time , 2019, ArXiv.

[26]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[27]  Friedrich Eisenbrand,et al.  Parametric Integer Programming in Fixed Dimension , 2008, Math. Oper. Res..

[28]  E. Ehrhart,et al.  Polynômes arithmétiques et méthode des polyèdres en combinatoire , 1974 .

[29]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[30]  Sven Verdoolaege,et al.  Counting with rational generating functions , 2008, J. Symb. Comput..

[31]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[32]  Joseph Paat,et al.  Improving Proximity Bounds Using Sparsity , 2020, ISCO.

[33]  Friedrich Eisenbrand,et al.  Proximity Results and Faster Algorithms for Integer Programming Using the Steinitz Lemma , 2020, ACM Trans. Algorithms.

[34]  Klaus Jansen,et al.  On Integer Programming, Discrepancy, and Convolution , 2018 .

[35]  Dmitriy S. Malyshev,et al.  The computational complexity of three graph problems for instances with bounded minors of constraint matrices , 2017, Discret. Appl. Math..

[36]  A modification of the Fourier-Motzkin algorithm for constructing a triangulation and star development , 2008 .

[37]  Dmitry V. Gribanov,et al.  The width and integer optimization on simplices with bounded minors of the constraint matrices , 2016, Optimization Letters.

[38]  A. Barvinok A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1994 .

[39]  B. David Saunders,et al.  Computing the smith forms of integer matrices and solving related problems , 2005 .

[40]  P. McMullen Valuations and Dissections , 1993 .

[41]  Panos M. Pardalos,et al.  FPT-algorithms for some problems related to integer programming , 2017, Journal of Combinatorial Optimization.

[42]  R E Gomory,et al.  ON THE RELATION BETWEEN INTEGER AND NONINTEGER SOLUTIONS TO LINEAR PROGRAMS. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Sergey I. Veselov,et al.  Integer program with bimodular matrix , 2008, Discret. Optim..

[44]  Peter McMullen,et al.  Valuations on convex bodies , 1983 .

[45]  George Labahn,et al.  Asymptotically fast computation of Hermite normal forms of integer matrices , 1996, ISSAC '96.

[46]  Arne Storjohann,et al.  Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.

[47]  R. Winder Partitions of N-Space by Hyperplanes , 1966 .

[48]  William J. Cook,et al.  Sensitivity theorems in integer linear programming , 1986, Math. Program..

[49]  Vincent Loechner,et al.  Parameterized Polyhedra and Their Vertices , 1997, International Journal of Parallel Programming.

[50]  Dmitriy S. Malyshev,et al.  The computational complexity of dominating set problems for instances with bounded minors of constraint matrices , 2018, Discret. Optim..

[51]  Joseph Paat,et al.  Distances between optimal solutions of mixed-integer programs , 2018, Math. Program..

[52]  Éva Tardos,et al.  A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..

[53]  Alexander Barvinok,et al.  Integer Points in Polyhedra , 2008 .