Hydrodynamic Instabilities in Gaseous Detonations: Comparison of Euler, Navier–Stokes, and Large-Eddy Simulation

A large-eddy simulation is conducted to investigate the transient structure of an unstable detonation wave in two dimensions and the evolution of intrinsic hydrodynamic instabilities. The dependency of the detonation structure on the grid resolution is investigated, and the structures obtained by large-eddy simulation are compared with the predictions from solving the Euler and Navier–Stokes equations directly. The results indicate that to predict irregular detonation structures in agreement with experimental observations the vorticity generation and dissipation in small scale structures should be taken into account. Thus, large-eddy simulation with high grid resolution is required. In a low grid resolution scenario, in which numerical diffusion dominates, the structures obtained by solving the Euler or Navier–Stokes equations and large-eddy simulation are qualitatively similar. When high grid resolution is employed, the detonation structures obtained by solving the Euler or Navier–Stokes equations directly are roughly similar yet equally in disagreement with the experimental results. For high grid resolution, only the large-eddy simulation predicts detonation substructures correctly, a fact that is attributed to the increased dissipation provided by the subgrid scale model. Specific to the investigated configuration, major differences are observed in the occurrence of unreacted gas pockets in the high-resolution Euler and Navier–Stokes computations, which appear to be fully combusted when large-eddy simulation is employed.

[1]  Elaine S. Oran,et al.  A study of detonation structure: The formation ofunreacted gas pockets , 1982 .

[2]  A. Yoshizawa Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling , 1986 .

[3]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[4]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[5]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[6]  A. Bourlioux,et al.  Numerical study of unstable detonations , 1991 .

[7]  M. Wehner,et al.  Numerical simulation of Richtmyer–Meshkov instabilities , 1992 .

[8]  J. Saltzman,et al.  An unsplit 3D upwind method for hyperbolic conservation laws , 1994 .

[9]  Xiaolin Li,et al.  A comparative numerical study of the Richtmyer-Meshkov instability with nonlinear analysis in two and three dimensions , 1997 .

[10]  M. Y. Hussaini On Large-Eddy Simulation of Compressible Flows , 1998 .

[11]  J. Douglas,et al.  A New^Scheme for the Incompressible Navier-Stokes Equations Employing Alternating-Direction Operator Splitting and Domain Decomposition , 1998 .

[12]  Elaine S. Oran,et al.  A Numerical Study of a Two-Dimensional H2-O2-Ar Detonation Using a Detailed Chemical Reaction Model , 1998 .

[13]  L. Bauwens,et al.  DETONATION CELL SIZES - A NUMERICAL STUDY , 1999 .

[14]  A. Chtchelkanova,et al.  Interaction of a shock with a sinusoidally perturbed flame , 1999 .

[15]  J. M. Powers,et al.  Detonation solutions from reactive Navier-Stokes equations , 1999 .

[16]  Elaine S. Oran,et al.  Formation and evolution of two-dimensional cellular detonations , 1999 .

[17]  Elaine S. Oran,et al.  Numerical Simulation of Deflagration-to-Detonation Transition: The Role of Shock-Flame Interactions in Turbulent Flames , 1999 .

[18]  Elaine S. Oran,et al.  Two-dimensional reactive flow dynamics in cellular detonation waves , 1999 .

[19]  J. Spyropoulos A new scheme for the Navier -Stokes equations employing alternating-direction operator splitting and domain decomposition , 1999 .

[20]  F. Sharpe,et al.  Two-dimensional numerical simulations of idealized detonations , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Ronald Fedkiw,et al.  Numerical resolution of pulsating detonation waves , 2000 .

[22]  E. Oran,et al.  The influence of shock bifurcations on shock-flame interactions and DDT , 2001 .

[23]  Gary J. Sharpe,et al.  Transverse waves in numerical simulations of cellular detonations , 2001, Journal of Fluid Mechanics.

[24]  Richard Bambrey,et al.  Experimental observations of flame acceleration and transition to detonation following shock-flame interaction , 2001 .

[25]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .

[26]  John H. S. Lee,et al.  The failure mechanism of gaseous detonations: experiments in porous wall tubes , 2002 .

[27]  Joseph E. Shepherd,et al.  THE STRUCTURE OF THE DETONATION FRONT IN GASES , 2002 .

[28]  M. Brouillette THE RICHTMYER-MESHKOV INSTABILITY , 2002 .

[29]  Joseph E. Shepherd,et al.  Direct observations of reaction zone structure in propagating detonations , 2003 .

[30]  J. Austin,et al.  The role of instability in gaseous detonation , 2003 .

[31]  Yinghua Han Non-relecting boundary condition in detonation simulation , 2003 .

[32]  Ralf Deiterding,et al.  Parallel adaptive simulation of multi-dimensional detonation structures , 2003 .

[33]  Salah S. Ibrahim,et al.  Large Eddy Simulation of a Propagating Turbulent Premixed Flame , 2003 .

[34]  J. Shepherd,et al.  Numerical Study of the Detonation Wave Structure in Ethylene-oxygen Mixtures , 2004 .

[35]  V. I. Volkov,et al.  Numerical simulations of Rayleigh-Taylor and Richtmyer-Meshkov instability using MAH-3 code , 2004 .

[36]  D. Scott Stewart,et al.  On the dynamics of self-sustained one-dimensional detonations: A numerical study in the shock-attached frame , 2004 .

[37]  J.A. Ferreira,et al.  The use of splitting methods in the numerical simulation of reacting flows , 2004 .

[38]  B C Khoo,et al.  The cellular structure of a two-dimensional H2/O2/Ar detonation wave , 2004 .

[39]  Joseph E. Shepherd,et al.  Reaction zones in highly unstable detonations , 2005 .

[40]  Ronald K. Hanson,et al.  The ignition mechanism in irregular structure gaseous detonations , 2005 .

[41]  Xiangyu Hu,et al.  The structure and evolution of a two-dimensional H2/O2/Ar cellular detonation , 2005 .

[42]  J. H. Lee,et al.  On the Hydrodynamic Thickness of Cellular Detonations , 2005 .

[43]  Nikolaos Nikiforakis,et al.  Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations , 2005 .

[44]  I. V. Popov,et al.  Numerical Simulation of Richtmyer–Meshkov Instability∗ , 2006 .

[45]  Tariq D. Aslam,et al.  Simulations of pulsating one-dimensional detonations with true fifth order accuracy , 2006, J. Comput. Phys..

[46]  Elaine S. Oran,et al.  Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture , 2007 .

[47]  Chung King Law,et al.  The hydrodynamic structure of unstable cellular detonations , 2007, Journal of Fluid Mechanics.

[48]  Luca Massa,et al.  Triple-point shear layers in gaseous detonation waves , 2007, Journal of Fluid Mechanics.

[49]  Elaine S. Oran,et al.  Origins of the deflagration-to-detonation transition in gas-phase combustion , 2007 .

[50]  John H. S. Lee The Detonation Phenomenon , 2008 .

[51]  Johan Meyers,et al.  Quality and Reliability of Large-Eddy Simulations , 2008 .

[52]  Elaine S. Oran,et al.  Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing , 2008 .

[53]  M. Sabzpooshani,et al.  Formation of unburnt pockets in gaseous detonations , 2009 .

[54]  Joseph E. Shepherd,et al.  Detonation in gases , 2009 .

[55]  J. Quirk,et al.  The Origin of Shock Bifurcations in Cellular Detonations , 2009 .

[56]  R. Deiterding,et al.  Large-eddy simulations of Richtmyer–Meshkov instability in a converging geometry , 2009, 0910.3257.

[57]  K. Mazaheri,et al.  Operator splitting in simulation of detonation structure , 2011 .

[58]  M. Radulescu,et al.  Mach reflection bifurcations as a mechanism of cell multiplication in gaseous detonations , 2011 .

[59]  K. Mazaheri,et al.  Triple Point Collision and Hot Spots in Detonations with Regular Structure , 2012 .

[60]  K. Mazaheri,et al.  riple Points Collision in Unstable Detonations , 2011 .

[61]  Johan Meyers,et al.  Error-Landscape Assessment of Large-Eddy Simulations: A Review of the Methodology , 2011, J. Sci. Comput..

[62]  K. Mazaheri,et al.  High-resolution numerical simulation of the structure of 2-D gaseous detonations , 2011 .

[63]  K. Mazaheri,et al.  Diffusion and hydrodynamic instabilities in gaseous detonations , 2012 .

[64]  M. Radulescu,et al.  Detonation re-initiation mechanism following the Mach reflection of a quenched detonation , 2012, 1202.2318.

[65]  R. Bhattacharjee Experimental Investigation of Detonation Re-initiation Mechanisms Following a Mach Reflection of a Quenched Detonation , 2013 .

[66]  K. Mazaheri,et al.  Hydrodynamic instabilities and transverse waves in propagation mechanism of gaseous detonations , 2013 .

[67]  J. H. Lee The propagation mechanism of cellular detonation , 2022 .