Codimension-one minimal extensions onto Haar subspaces

Let H"n be an n-dimensional Haar subspace of C"R[a,b] and H"n"-"1 be an n-1-dimensional Haar subspace of H"n. Let A be a linear, continuous operator on H"n"-"1. In this note we show that if a norm of minimal extension of A from H"n into H"n"-"1 is greater than the operator norm of A, then it is a strongly unique minimal extension. Moreover, we prove, with a slightly stronger assumptions, that minimal extension of A is a generalized (see Definition 8) interpolating operator.

[1]  H. McLaughlin,et al.  Another characterization of Haar subspaces , 1975 .

[2]  A. Haar,et al.  Die Minkowskische Geometrie und die Annäherung an stetige Funktionen , 1917 .

[3]  M. Fabian,et al.  Functional Analysis and Infinite-Dimensional Geometry , 2001 .

[4]  W. Ruess,et al.  Weak compactness in spaces of compact operators and of vector-valued functions. , 1983 .

[5]  Minimal generalized interpolation projections , 1977 .

[6]  G. Lewicki Minimal extensions in tensor product spaces , 1999 .

[7]  A. Aksoy,et al.  Best Approximation in Numerical Radius , 2010, 1007.2205.

[8]  M. Bartelt,et al.  Characterizations of strong unicity in approximation theory , 1973 .

[9]  Allan Pinkus,et al.  Strong Uniqueness , 2010, 1001.3070.

[10]  A proof of the Grünbaum conjecture , 2010 .

[11]  E. Cheney,et al.  Minimal Interpolating Projections , 1970 .

[12]  G. Alexits Approximation theory , 1983 .

[13]  Three-dimensional subspace of l∞(5) with maximal projection constant , 2009 .

[14]  E. Cheney,et al.  Minimal projections on hyperplanes in sequence spaces , 1974 .

[15]  Simon Foucart,et al.  Allometry constants of finite-dimensional spaces: theory and computations , 2009, Numerische Mathematik.

[16]  E. Cheney,et al.  On the existence and characterization of minimal projections. , 1972 .

[17]  Grzegorz Lewicki,et al.  Codimension-one minimal projections onto Haar subspaces , 2004, J. Approx. Theory.

[18]  Grzegorz Lewicki,et al.  Equality of two strongly unique minimal projection constants , 2010, J. Approx. Theory.

[19]  Strong unicity criterion in some space of operators , 1993 .