A two-grid discretization scheme of non-conforming finite elements for transmission eigenvalues
暂无分享,去创建一个
Yidu Yang | Hai Bi | Yu Zhang | Shixi Wang | Yu Zhang | Yidu Yang | H. Bi | Shixio Wang
[1] X. Hu,et al. Two-Grid Methods for Maxwell Eigenvalue Problems , 2014, SIAM J. Numer. Anal..
[2] Jinchao Xu. A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .
[3] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[4] D. Colton,et al. Transmission eigenvalues and the nondestructive testing of dielectrics , 2008 .
[5] Hai Bi,et al. Non-conforming finite element methods for transmission eigenvalue problem ☆ , 2016, 1601.01068.
[6] Hai Bi,et al. A new multigrid finite element method for the transmission eigenvalue problems , 2016, Appl. Math. Comput..
[7] Jiguang Sun,et al. Estimation of transmission eigenvalues and the index of refraction from Cauchy data , 2010 .
[8] Jiguang Sun. Iterative Methods for Transmission Eigenvalues , 2011, SIAM J. Numer. Anal..
[9] Xia Ji,et al. A Multigrid Method for Helmholtz Transmission Eigenvalue Problems , 2014, J. Sci. Comput..
[10] Jinchao Xu,et al. A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..
[11] Jiguang Sun,et al. Finite Element Methods for Maxwell's Transmission Eigenvalues , 2012, SIAM J. Sci. Comput..
[12] Xia Ji,et al. Algorithm 922: A Mixed Finite Element Method for Helmholtz Transmission Eigenvalues , 2012, TOMS.
[13] Tong Zhang,et al. Two-Sided Arnoldi and Nonsymmetric Lanczos Algorithms , 2002, SIAM J. Matrix Anal. Appl..
[14] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[15] Jie Shen,et al. Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem , 2015, Comput. Math. Appl..
[16] K. Kolman,et al. A Two-Level Method for Nonsymmetric Eigenvalue Problems , 2005 .
[17] Rong An,et al. Optimal Error Estimates of Linearized Crank–Nicolson Galerkin Method for Landau–Lifshitz Equation , 2016, J. Sci. Comput..
[18] Hai Bi,et al. The Shifted-Inverse Iteration Based on the Multigrid Discretizations for Eigenvalue Problems , 2015, SIAM J. Sci. Comput..
[19] Liwei Xu,et al. Computation of Maxwell’s transmission eigenvalues and its applications in inverse medium problems , 2013 .
[20] Hai Bi,et al. Error estimates and a two grid scheme for approximating transmission eigenvalues , 2015, 1506.06486.
[21] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[22] Hai Bi,et al. Mixed Methods for the Helmholtz Transmission Eigenvalues , 2016, SIAM J. Sci. Comput..
[23] Jiguang Sun,et al. Error Analysis for the Finite Element Approximation of Transmission Eigenvalues , 2014, Comput. Methods Appl. Math..
[24] W. Gibbs,et al. Finite element methods , 2017, Graduate Studies in Mathematics.
[25] Aihui Zhou,et al. Three-Scale Finite Element Discretizations for Quantum Eigenvalue Problems , 2007, SIAM J. Numer. Anal..
[26] Jiayu Han,et al. An Adaptive Finite Element Method for the Transmission Eigenvalue Problem , 2016, Journal of Scientific Computing.
[27] Fioralba Cakoni,et al. The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..
[28] D. Colton,et al. Analytical and computational methods for transmission eigenvalues , 2010 .
[29] Liwei Xu,et al. A spectral projection method for transmission eigenvalues , 2016, 1605.00727.
[30] Roland Glowinski,et al. An introduction to the mathematical theory of finite elements , 1976 .
[31] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[32] Ming Wang,et al. A new class of Zienkiewicz-type non-conforming element in any dimensions , 2007, Numerische Mathematik.