Basis set representation of the electron density at an atomic nucleus.

In this paper a detailed investigation of the basis set convergence for the calculation of relativistic electron densities at the position of finite-sized atomic nuclei is presented. The development of Gauss-type basis sets for such electron densities is reported and the effect of different contraction schemes is studied. Results are then presented for picture-change corrected calculations based on the Douglas-Kroll-Hess Hamiltonian. Moreover, the role of electron correlation, the effect of the numerical integration accuracy in density functional calculations, and the convergence with respect to the order of the Douglas-Kroll-Hess Hamiltonian and the picture-change-transformed property operator are studied.

[1]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[2]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[3]  M. Filatov First principles calculation of Mössbauer isomer shift , 2009 .

[4]  G. Breit The Isotope Displacement in Hyperfine Structure , 1932 .

[5]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[6]  Roland Lindh,et al.  Main group atoms and dimers studied with a new relativistic ANO basis set , 2004 .

[7]  Roland Lindh,et al.  New relativistic ANO basis sets for transition metal atoms. , 2005, The journal of physical chemistry. A.

[8]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[9]  E. Tiemann,et al.  Isotopic field shift of the rotational energy of the Pb-chalcogenides and Tl-Halides , 1982 .

[10]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[11]  G. Breit,et al.  Theory of Isotope Shift , 1958 .

[12]  G. Racah Isotopic Displacement and Hyperfine Structure , 1932, Nature.

[13]  M. Bühl,et al.  Calculation of NMR and EPR parameters : theory and applications , 2004 .

[14]  M. Filatov,et al.  Calibration of 57Fe isomer shift from ab initio calculations: can theory and experiment reach an agreement? , 2010, Physical chemistry chemical physics : PCCP.

[15]  A comparative study of finite nucleus models for low-lying states of few-electron high-Z atoms , 2000 .

[16]  Lucas Visscher,et al.  Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions , 1997 .

[17]  P. Ros,et al.  Numerical relativistic self-consistent field calculation of electron density and 〈r−3〉 for a number of electron configurations of iron and tin. Application to tin Mössbauer spectroscopy , 1975 .

[18]  M. Reiher,et al.  Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science , 2009 .

[19]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[20]  D. Chong,et al.  The calculation of field shift effects in the rotational spectra of heavy metal-containing diatomic molecules using density functional theory: comparison with experiment for the Tl-halides and Pb-chalcogenides , 2004 .

[21]  A. Freeman,et al.  Relativistic electron densities and isomer shifts in transition-metal ions , 1976 .

[22]  J. E. Rosenthal,et al.  The Isotope Shift in Hyperfine Structure , 1932 .

[23]  Roland Lindh,et al.  The Douglas-Kroll-Hess electron density at an atomic nucleus , 2008 .

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  M. Filatov,et al.  Calibration of 119Sn isomer shift using ab initio wave function methods. , 2009, The Journal of chemical physics.

[26]  FRANCESCO AQUILANTE,et al.  MOLCAS 7: The Next Generation , 2010, J. Comput. Chem..

[27]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[28]  R. Broer,et al.  CASSCF study of the relation between the Fe charge and the Mössbauer isomer shift , 2008 .

[29]  A. Svane Calculations of hyperfine parameters in antimony compounds , 2003 .

[30]  F. Neese,et al.  Calibration of modern density functional theory methods for the prediction of 57Fe Mössbauer isomer shifts: meta-GGA and double-hybrid functionals. , 2009, Inorganic chemistry.

[31]  Michael Filatov,et al.  DFT Approach to the Calculation of Mössbauer Isomer Shifts. , 2008, Journal of chemical theory and computation.

[32]  J. Zwanziger,et al.  Computation of Mössbauer isomer shifts from first principles , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[34]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[35]  H. Stoll,et al.  Molecular properties of FeCO as derived from AB initio molecular orbital calculations , 1987 .

[36]  Werner Kutzelnigg,et al.  Theory of the expansion of wave functions in a gaussian basis , 1994 .

[37]  Svane,et al.  Theoretical investigation of the isomer shifts of the 119Sn Mössbauer isotope. , 1987, Physical review. B, Condensed matter.

[38]  Roland Lindh,et al.  2MOLCAS as a development platform for quantum chemistry software , 2004 .

[39]  Relativistic Quantum Chemistry , 2009 .

[40]  D. A. Shirley,et al.  Application and Interpretation of Isomer Shifts , 1964 .

[41]  Roland Lindh,et al.  Molecular integrals by numerical quadrature. I. Radial integration , 2001 .

[42]  W. Kutzelnigg Completeness of a kinetically balanced Gaussian basis. , 2007, Journal of Chemical Physics.

[43]  Michael Filatov,et al.  On the calculation of Mössbauer isomer shift. , 2007, The Journal of chemical physics.

[44]  Frank Neese,et al.  Prediction and interpretation of the 57Fe isomer shift in Mössbauer spectra by density functional theory , 2002 .

[45]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[46]  E. Cancès,et al.  Computational quantum chemistry: A primer , 2003 .