Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons

AMPA-type glutamate receptors (AMPA-Rs) mediate a majority of excitatory synaptic transmission in the brain. In hippocampus, most AMPA-Rs are hetero-oligomers composed of GluR1/GluR2 or GluR2/GluR3 subunits. Here we show that these AMPA-R forms display different synaptic delivery mechanisms. GluR1/GluR2 receptors are added to synapses during plasticity; this requires interactions between GluR1 and group I PDZ domain proteins. In contrast, GluR2/GluR3 receptors replace existing synaptic receptors continuously; this occurs only at synapses that already have AMPA-Rs and requires interactions by GluR2 with NSF and group II PDZ domain proteins. The combination of regulated addition and continuous replacement of synaptic receptors can stabilize long-term changes in synaptic efficacy and may serve as a general model for how surface receptor number is established and maintained.

[1]  N. Toni,et al.  LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite , 1999, Nature.

[2]  H. Okado,et al.  Postsynaptic expression of Ca2+-permeable AMPA-type glutamate receptor channels by viral-mediated gene transfer. , 1999, Brain research. Molecular brain research.

[3]  M. Sheng,et al.  Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization , 2000, Nature Neuroscience.

[4]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[5]  G. Collingridge,et al.  Surface Expression of AMPA Receptors in Hippocampal Neurons Is Regulated by an NSF-Dependent Mechanism , 1999, Neuron.

[6]  R. Dingledine,et al.  Structural determinants of barium permeation and rectification in non- NMDA glutamate receptor channels , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  Mark von Zastrow,et al.  Role of AMPA Receptor Cycling in Synaptic Transmission and Plasticity , 1999, Neuron.

[8]  Andreas Lüthi,et al.  Hippocampal LTD Expression Involves a Pool of AMPARs Regulated by the NSF–GluR2 Interaction , 1999, Neuron.

[9]  E. Ziff Recent Excitement in the Ionotropic Glutamate Receptor Field , 1999, Annals of the New York Academy of Sciences.

[10]  P. Seeburg,et al.  The organization of the gene for the functionally dominant alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR-B. , 1994, The Journal of biological chemistry.

[11]  M. Ehlers,et al.  Reinsertion or Degradation of AMPA Receptors Determined by Activity-Dependent Endocytic Sorting , 2000, Neuron.

[12]  R. Malinow,et al.  Deficiency in induction but not expression of LTP in hippocampal slices from young rats. , 1996, Learning & memory.

[13]  L. Cantley,et al.  Recognition of Unique Carboxyl-Terminal Motifs by Distinct PDZ Domains , 1997, Science.

[14]  D. Linden,et al.  Expression of Cerebellar Long-Term Depression Requires Postsynaptic Clathrin-Mediated Endocytosis , 2000, Neuron.

[15]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[16]  G. Collingridge,et al.  NSF Binding to GluR2 Regulates Synaptic Transmission , 1998, Neuron.

[17]  G. Lynch,et al.  The biochemistry of memory: a new and specific hypothesis. , 1984, Science.

[18]  T. Südhof,et al.  Binding of neuroligins to PSD-95. , 1997, Science.

[19]  T. Manabe,et al.  Calcium- and calmodulin-dependent phosphorylation of AMPA type glutamate receptor subunits by endogenous protein kinases in the post-synaptic density. , 1997, Brain research. Molecular brain research.

[20]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[21]  J. Partridge,et al.  Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses , 1999, Nature Neuroscience.

[22]  M. Sheng,et al.  Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. , 2000, Annual review of physiology.

[23]  J. Zhu,et al.  Postnatal synaptic potentiation: Delivery of GluR4-containing AMPA receptors by spontaneous activity , 2000, Nature Neuroscience.

[24]  R. Huganir,et al.  PDZ domains in synapse assembly and signalling. , 2000, Trends in cell biology.

[25]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[26]  S. Rumpel,et al.  Silent Synapses in the Developing Rat Visual Cortex: Evidence for Postsynaptic Expression of Synaptic Plasticity , 1998, The Journal of Neuroscience.

[27]  R. Nicoll,et al.  Contrasting properties of two forms of long-term potentiation in the hippocampus , 1995, Nature.

[28]  Michael C. Crair,et al.  Silent Synapses during Development of Thalamocortical Inputs , 1997, Neuron.

[29]  J. Roder,et al.  Enhanced LTP in Mice Deficient in the AMPA Receptor GluR2 , 1996, Neuron.

[30]  D. Linden,et al.  Long-term synaptic depression. , 1995, Annual review of neuroscience.

[31]  P. Osten,et al.  Mutagenesis Reveals a Role for ABP/GRIP Binding to GluR2 in Synaptic Surface Accumulation of the AMPA Receptor , 2000, Neuron.

[32]  M. Bear Homosynaptic long-term depression: a mechanism for memory? , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Yu Tian Wang,et al.  Regulation of AMPA Receptor–Mediated Synaptic Transmission by Clathrin-Dependent Receptor Internalization , 2000, Neuron.

[34]  Richard L. Huganir,et al.  Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons , 1999, Nature Neuroscience.

[35]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[36]  Stuart G. Cull-Candy,et al.  Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype , 2000, Nature.

[37]  Richard L. Huganir,et al.  GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors , 1997, Nature.

[38]  Roberto Malinow,et al.  LTP mechanisms: from silence to four-lane traffic , 2000, Current Opinion in Neurobiology.

[39]  H. Hirai Modification of AMPA receptor clustering regulates cerebellar synaptic plasticity , 2001, Neuroscience Research.

[40]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[41]  J. Lübke,et al.  Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. , 1999, Science.

[42]  T. Saito,et al.  rDLG6: a novel homolog of Drosophila DLG expressed in rat brain. , 1999, Biochemical and biophysical research communications.

[43]  P. Seeburg The TINS/TiPS Lecture the molecular biology of mammalian glutamate receptor channels , 1993, Trends in Neurosciences.

[44]  Lawrence C. Katz,et al.  Neuronal transfection in brain slices using particle-mediated gene transfer , 1994, Neuron.

[45]  R. Wenthold,et al.  Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[47]  R. Malinow,et al.  Maturation of a Central Glutamatergic Synapse , 1996, Science.

[48]  P. Somogyi,et al.  NMDA Receptor Content of Synapses in Stratum Radiatum of the Hippocampal CA1 Area , 2000, The Journal of Neuroscience.

[49]  Mark von Zastrow,et al.  Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures , 1999, Nature Neuroscience.

[50]  T. Soderling,et al.  Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. Henley,et al.  Interactions between AMPA receptors and intracellular proteins , 2000, Neuropharmacology.

[52]  R. Nicoll,et al.  Synaptic plasticity and dynamic modulation of the postsynaptic membrane , 2000, Nature Neuroscience.

[53]  Andreas Lüthi,et al.  Modulation of AMPA receptor unitary conductance by synaptic activity , 1998, Nature.

[54]  M. Bear,et al.  Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity , 2000, Nature.

[55]  R. Nicoll,et al.  Dynamin-dependent endocytosis of ionotropic glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Rothman,et al.  Mechanisms of intracellular protein transport , 1994, Nature.

[57]  M. V. Rossum,et al.  Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses , 2000, Neuron.

[58]  Stuart K. Kim,et al.  LIN-10 Is a Shared Component of the Polarized Protein Localization Pathways in Neurons and Epithelia , 1998, Cell.

[59]  R. Huganir,et al.  Interaction of the N-Ethylmaleimide–Sensitive Factor with AMPA Receptors , 1998, Neuron.

[60]  Samuel Bogoch,et al.  The biochemistry of memory , 1968 .

[61]  S. Heinemann,et al.  Cloned glutamate receptors. , 1994, Annual review of neuroscience.

[62]  G. Kerchner,et al.  AMPA receptor–PDZ interactions in facilitation of spinal sensory synapses , 1999, Nature Neuroscience.

[63]  G. Turrigiano AMPA Receptors Unbound Membrane Cycling and Synaptic Plasticity , 2000, Neuron.

[64]  T. Soderling,et al.  Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. , 1997, Science.

[65]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[66]  R. Abagyan,et al.  Novel Anchorage of GluR2/3 to the Postsynaptic Density by the AMPA Receptor–Binding Protein ABP , 1998, Neuron.

[67]  Mark von Zastrow,et al.  Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD , 2000, Nature Neuroscience.

[68]  K. Svoboda,et al.  Two-photon imaging in living brain slices. , 1999, Methods.

[69]  Kristen M. Harris,et al.  Quantal analysis and synaptic anatomy — integrating two views of hippocampal plasticity , 1993, Trends in Neurosciences.

[70]  J. Hell,et al.  SAP97 Is Associated with the α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Receptor GluR1 Subunit* , 1998, The Journal of Biological Chemistry.

[71]  P. Osten,et al.  The AMPA Receptor GluR2 C Terminus Can Mediate a Reversible, ATP-Dependent Interaction with NSF and α- and β-SNAPs , 1998, Neuron.

[72]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[73]  R. Fetter,et al.  Neuroligin Expressed in Nonneuronal Cells Triggers Presynaptic Development in Contacting Axons , 2000, Cell.

[74]  R. Malinow,et al.  In vivo development of neuronal structure and function. , 1996, Cold Spring Harbor symposia on quantitative biology.

[75]  Dev Kk,et al.  Regulation of AMPA receptors in rat CNS. , 1996 .

[76]  R. Nicoll,et al.  Contribution of cytoskeleton to the internalization of AMPA receptors. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[77]  R. Huganir,et al.  Clustering of AMPA Receptors by the Synaptic PDZ Domain–Containing Protein PICK1 , 1999, Neuron.

[78]  R. Huganir,et al.  Cerebellar Long-Term Depression Requires PKC-Regulated Interactions between GluR2/3 and PDZ Domain–Containing Proteins , 2000, Neuron.