Entangling an arbitrary pair of qubits in a long ion crystal

It is well established that the collective motion of ion crystals can be used as a quantum bus for multi-qubit entanglement. However, as the number of ions increases, it becomes difficult to directly entangle ions far apart and resolve all motional modes of the ion crystal. We introduce a scalable and flexible scheme for efficient entanglement between any pair of ions within a large ion chain, using an evenly distributed 50-ion crystal as an example. By performing amplitude and frequency modulation, we find high-fidelity pulse sequences that primarily drive a transverse motional mode with a wavelength of 4 ion spacings. We present two $500 \mu s$ pulses that can in theory suppress gate errors due to residual motion to below $10^{-4}$, and observe a trade-off between gate power and robustness against unwanted frequency offsets.

[1]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[2]  Shi-Liang Zhu,et al.  Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams , 2006 .

[3]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[4]  K. Brown,et al.  Multi-qubit compensation sequences , 2009, 0908.2593.

[5]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[6]  Mauricio Gutierrez,et al.  Simulating the performance of a distance-3 surface code in a linear ion trap , 2017, 1710.01378.

[7]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[8]  A Walther,et al.  Controlling fast transport of cold trapped ions. , 2012, Physical review letters.

[9]  F. Mintert,et al.  High fidelity quantum gates of trapped ions in the presence of motional heating , 2015, 1510.05814.

[10]  Composite two-qubit gates , 2015, 1503.08788.

[11]  A Retzker,et al.  Trapped-Ion Quantum Logic with Global Radiation Fields. , 2016, Physical review letters.

[12]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[13]  I. V. Inlek,et al.  Coherent error suppression in multiqubit entangling gates. , 2011, Physical review letters.

[14]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[15]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[16]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[17]  Tony E. Lee,et al.  Ion crystals in anharmonic traps , 2016, 1610.01104.

[18]  Christian F. Roos,et al.  Ion trap quantum gates with amplitude-modulated laser beams , 2007, 0710.1204.

[19]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[20]  D. Porras,et al.  Effective spin quantum phases in systems of trapped ions (11 pages) , 2005 .

[21]  Caroline Figgatt,et al.  Fault-tolerant quantum error detection , 2016, Science Advances.

[22]  Jonathan A. Jones Robust Ising gates for practical quantum computation , 2003 .

[23]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[24]  Michael J Biercuk,et al.  Phase-modulated decoupling and error suppression in qubit-oscillator systems. , 2014, Physical review letters.

[25]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[26]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[27]  T. R. Tan,et al.  Coherent diabatic ion transport and separation in a multizone trap array. , 2012, Physical review letters.

[28]  S. Olmschenk,et al.  Manipulation and detection of a trapped Yb+ hyperfine qubit , 2007, 0708.0657.

[29]  T. R. Tan,et al.  High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.

[30]  C Figgatt,et al.  Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. , 2014, Physical review letters.

[31]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[32]  Andrew Steane,et al.  Fast quantum logic gates with trapped-ion qubits , 2017, Nature.

[33]  C. Monroe,et al.  Large-scale quantum computation in an anharmonic linear ion trap , 2009, 0901.0579.

[34]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[35]  Caroline Figgatt,et al.  Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force. , 2017, Physical review letters.