Quantitative Genome-Wide Genetic Interaction Screens Reveal Global Epistatic Relationships of Protein Complexes in Escherichia coli

Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI) screens can provide insights into the biological role(s) of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.

[1]  F. Neidhardt,et al.  Roles of the two lysyl-tRNA synthetases of Escherichia coli: analysis of nucleotide sequences and mutant behavior , 1990, Journal of bacteriology.

[2]  M. Mcintosh,et al.  Nucleotide sequence and genetic organization of the ferric enterobactin transport system: homology to other peripiasmic binding protein‐dependent systems in Escherichia coli , 1991, Molecular microbiology.

[3]  C. Earhart,et al.  Organization of genes encoding membrane proteins of the Escherichia coli ferrienterobactin permease , 1991, Molecular microbiology.

[4]  M. O'Connor,et al.  A ribosomal ambiguity mutation in the 530 loop of E. coli 16S rRNA. , 1992, Nucleic acids research.

[5]  T. Mizuno,et al.  A study of the double mutation of dnaJ and cbpA, whose gene products function as molecular chaperones in Escherichia coli , 1995, Journal of bacteriology.

[6]  Andrew D. Miller,et al.  The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli. , 1995, Structure.

[7]  J. Courcelle,et al.  recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[8]  F. Baneyx,et al.  Roles of the Escherichia coli Small Heat Shock Proteins IbpA and IbpB in Thermal Stress Management: Comparison with ClpA, ClpB, and HtpG In Vivo , 1998, Journal of bacteriology.

[9]  J. Wang,et al.  Crystal structure determination of Escherichia coli ClpP starting from an EM-derived mask. , 1998, Journal of structural biology.

[10]  M. Deutscher,et al.  RNase G (CafA protein) and RNase E are both required for the 5′ maturation of 16S ribosomal RNA , 1999, The EMBO journal.

[11]  Y. Takahashi,et al.  Functional assignment of the ORF2-iscS-iscU-iscA-hscB-hscA-fdx-ORF3 gene cluster involved in the assembly of Fe-S clusters in Escherichia coli. , 1999, Journal of biochemistry.

[12]  H. Saibil,et al.  Molecular chaperones: containers and surfaces for folding, stabilising or unfolding proteins. , 2000, Current opinion in structural biology.

[13]  T. Leisinger,et al.  Deletion Analysis of the Escherichia coli Taurine and Alkanesulfonate Transport Systems , 2000, Journal of bacteriology.

[14]  P. Kiley,et al.  The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  K. Hughes,et al.  Coupling of Flagellar Gene Expression to Flagellar Assembly in Salmonella enterica Serovar Typhimurium andEscherichia coli , 2000, Microbiology and Molecular Biology Reviews.

[16]  C. Kurland,et al.  Growth Phase-Coupled Changes of the Ribosome Profile in Natural Isolates and Laboratory Strains of Escherichia coli , 2000, Journal of bacteriology.

[17]  Temple F. Smith,et al.  Operons in Escherichia coli: genomic analyses and predictions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  A. Horwich,et al.  ClpA mediates directional translocation of substrate proteins into the ClpP protease , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Stumpe,et al.  Identification of the ABC protein SapD as the subunit that confers ATP dependence to the K+-uptake systems Trk(H) and Trk(G) from Escherichia coli K-12. , 2001, Microbiology.

[20]  A. Steven,et al.  Functional Domains of the ClpA and ClpX Molecular Chaperones Identified by Limited Proteolysis and Deletion Analysis* , 2001, The Journal of Biological Chemistry.

[21]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[22]  Julio Collado-Vides,et al.  A powerful non-homology method for the prediction of operons in prokaryotes , 2002, ISMB.

[23]  R. Iwanicka-Nowicka,et al.  The switch from inorganic to organic sulphur assimilation in Escherichia coli: adenosine 5′‐phosphosulphate (APS) as a signalling molecule for sulphate excess , 2002, Molecular microbiology.

[24]  W. Jacobs,et al.  Functional genomics reveals the sole sulphate transporter of the Mycobacterium tuberculosis complex and its relevance to the acquisition of sulphur in vivo , 2002, Molecular microbiology.

[25]  Daniel Lim,et al.  Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A , 2003, Nature Structural Biology.

[26]  Walid A Houry,et al.  Chaperone networks in bacteria: analysis of protein homeostasis in minimal cells. , 2004, Journal of structural biology.

[27]  S. Foster,et al.  Role of a Cysteine Synthase in Staphylococcus aureus , 2004, Journal of bacteriology.

[28]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[29]  J. Imlay,et al.  Repair of Oxidized Iron-Sulfur Clusters in Escherichia coli* , 2004, Journal of Biological Chemistry.

[30]  G. Church,et al.  Modular epistasis in yeast metabolism , 2005, Nature Genetics.

[31]  Huiming Ding,et al.  The synthetic genetic interaction spectrum of essential genes , 2005, Nature Genetics.

[32]  A. Emili,et al.  Interaction network containing conserved and essential protein complexes in Escherichia coli , 2005, Nature.

[33]  Sean R. Collins,et al.  A strategy for extracting and analyzing large-scale quantitative epistatic interaction data , 2006, Genome Biology.

[34]  Sean R. Collins,et al.  Exploration of the Function and Organization of the Yeast Early Secretory Pathway through an Epistatic Miniarray Profile , 2005, Cell.

[35]  I. Matic,et al.  Interplay between replication and recombination in Escherichia coli: impact of the alternative DNA polymerases. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Kanaya,et al.  Large-scale identification of protein-protein interaction of Escherichia coli K-12. , 2006, Genome research.

[37]  P. Bork,et al.  Identification and analysis of evolutionarily cohesive functional modules in protein networks. , 2006, Genome research.

[38]  Y. Hasegawa,et al.  Crystal structure of Escherichia coli SufC, an ABC‐type ATPase component of the SUF iron–sulfur cluster assembly machinery , 2006, FEBS letters.

[39]  Ron Shamir,et al.  Identification of functional modules using network topology and high-throughput data , 2007, BMC Systems Biology.

[40]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[41]  Tsutomu Suzuki,et al.  Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. , 2006, Molecular cell.

[42]  Hening Lin,et al.  How pathogenic bacteria evade mammalian sabotage in the battle for iron , 2006, Nature chemical biology.

[43]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[44]  A. Arkin,et al.  The Life-Cycle of Operons , 2006, PLoS genetics.

[45]  Monica Riley,et al.  Escherichia coli K-12: a cooperatively developed annotation snapshot—2005 , 2006, Nucleic acids research.

[46]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[47]  W. Houry,et al.  MoxR AAA+ ATPases: a novel family of molecular chaperones? , 2006, Journal of structural biology.

[48]  H. Bussey,et al.  Exploring genetic interactions and networks with yeast , 2007, Nature Reviews Genetics.

[49]  M. Marahiel,et al.  Siderophore-Based Iron Acquisition and Pathogen Control , 2007, Microbiology and Molecular Biology Reviews.

[50]  J. Collins,et al.  A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics , 2007, Cell.

[51]  Grant W. Brown,et al.  Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map , 2007, Nature.

[52]  Robert P. St.Onge,et al.  Defining genetic interaction , 2008, Proceedings of the National Academy of Sciences.

[53]  Sean R. Collins,et al.  A tool-kit for high-throughput, quantitative analyses of genetic interactions in E. coli , 2008, Nature Methods.

[54]  Jeremiah J. Faith,et al.  Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata , 2007, Nucleic Acids Res..

[55]  Trey Ideker,et al.  Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data , 2008, PLoS Comput. Biol..

[56]  D. Durocher,et al.  Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes , 2008, Proceedings of the National Academy of Sciences.

[57]  A. Mankin,et al.  Nucleotide Biosynthesis Is Critical for Growth of Bacteria in Human Blood , 2008, PLoS pathogens.

[58]  R. Shamir,et al.  From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions , 2008, Molecular systems biology.

[59]  Richard I. Morimoto,et al.  Adapting Proteostasis for Disease Intervention , 2008, Science.

[60]  Sean R. Collins,et al.  Conservation and Rewiring of Functional Modules Revealed by an Epistasis Map in Fission Yeast , 2008, Science.

[61]  Andrew Emili,et al.  eSGA: E. coli Synthetic Genetic Array analysis , 2008 .

[62]  F. W. Outten,et al.  Fe-S Cluster Assembly Pathways in Bacteria , 2008, Microbiology and Molecular Biology Reviews.

[63]  Sean R. Collins,et al.  A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. , 2008, Molecular cell.

[64]  Zhaolei Zhang,et al.  An atlas of chaperone–protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell , 2009, Molecular systems biology.

[65]  F. Hartl,et al.  Converging concepts of protein folding in vitro and in vivo , 2009, Nature Structural &Molecular Biology.

[66]  Chong Su,et al.  The Modular Organization of Protein Interactions in Escherichia coli , 2009, PLoS Comput. Biol..

[67]  J. Kirstein,et al.  Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases , 2009, Nature Reviews Microbiology.

[68]  K. Liberek,et al.  Distinct activities of Escherichia coli small heat shock proteins IbpA and IbpB promote efficient protein disaggregation. , 2009, Journal of molecular biology.

[69]  Andrew Emili,et al.  Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome , 2008, FEMS microbiology reviews.

[70]  B. Andrews,et al.  Systematic mapping of genetic interaction networks. , 2009, Annual review of genetics.

[71]  A. Emili,et al.  Systems-level approaches for identifying and analyzing genetic interaction networks in Escherichia coli and extensions to other prokaryotes. , 2009, Molecular bioSystems.

[72]  T. Begley,et al.  The structural and biochemical foundations of thiamin biosynthesis. , 2009, Annual review of biochemistry.

[73]  A. Emili,et al.  Global Functional Atlas of Escherichia coli Encompassing Previously Uncharacterized Proteins , 2009, PLoS biology.

[74]  M. Oturan,et al.  Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. , 2009, Chemical reviews.

[75]  A. Camilli,et al.  Tn-seq; high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms , 2009, Nature Methods.

[76]  Nevan J. Krogan,et al.  Quantitative Genetic Interactions Reveal Biological Modularity , 2010, Cell.

[77]  J. Imlay,et al.  The Escherichia coli btuE gene, encodes a glutathione peroxidase that is induced under oxidative stress conditions. , 2010, Biochemical and biophysical research communications.

[78]  M. Stumpf,et al.  Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. , 2010, FEMS microbiology reviews.

[79]  T. Silhavy,et al.  The bacterial cell envelope. , 2010, Cold Spring Harbor perspectives in biology.

[80]  Gary D Bader,et al.  Quantitative analysis of fitness and genetic interactions in yeast on a genome scale , 2010, Nature Methods.

[81]  Gary D Bader,et al.  The Genetic Landscape of a Cell , 2010, Science.

[82]  A. Emili,et al.  Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways , 2011, PLoS genetics.

[83]  B. Py,et al.  Fe-S clusters, fragile sentinels of the cell. , 2011, Current opinion in microbiology.

[84]  A. Urban,et al.  The Identification of a Novel Protein Involved in Molybdenum Cofactor Biosynthesis in Escherichia coli* , 2011, The Journal of Biological Chemistry.

[85]  Gary D. Bader,et al.  Protein Complexes are Central in the Yeast Genetic Landscape , 2011, PLoS Comput. Biol..

[86]  Michael Costanzo,et al.  Charting the genetic interaction map of a cell. , 2011, Current opinion in biotechnology.

[87]  Robert T Sauer,et al.  AAA+ proteases: ATP-fueled machines of protein destruction. , 2011, Annual review of biochemistry.

[88]  N. Krogan,et al.  Phenotypic Landscape of a Bacterial Cell , 2011, Cell.

[89]  E. Brown,et al.  Understanding ribosome assembly: the structure of in vivo assembled immature 30S subunits revealed by cryo-electron microscopy. , 2011, RNA.

[90]  H. Mobley,et al.  Redundancy and Specificity of Escherichia coli Iron Acquisition Systems during Urinary Tract Infection , 2011, Infection and Immunity.

[91]  Honghai Wang,et al.  Thiamin (Vitamin B1) Biosynthesis and Regulation: A Rich Source of Antimicrobial Drug Targets? , 2011, International journal of biological sciences.

[92]  Gowtham Atluri,et al.  Putting genetic interactions in context through a global modular decomposition. , 2011, Genome research.

[93]  R. Iyer,et al.  Borrelia burgdorferi Requires Glycerol for Maximum Fitness During The Tick Phase of the Enzootic Cycle , 2011, PLoS pathogens.

[94]  A. Szymańska,et al.  Importance of N- and C-terminal Regions of IbpA, Escherichia coli Small Heat Shock Protein, for Chaperone Function and Oligomerization* , 2011, The Journal of Biological Chemistry.

[95]  J. Hoskins,et al.  Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling , 2011, Proceedings of the National Academy of Sciences.

[96]  A. Emili,et al.  Genome-scale genetic manipulation methods for exploring bacterial molecular biology. , 2012, Molecular bioSystems.

[97]  Gary D. Bader,et al.  Multiple Genetic Interaction Experiments Provide Complementary Information Useful for Gene Function Prediction , 2012, PLoS Comput. Biol..

[98]  T. Baker,et al.  ClpXP, an ATP-powered unfolding and protein-degradation machine. , 2011, Biochimica et biophysica acta.

[99]  V. Sourjik,et al.  Physical map and dynamics of the chaperone network in Escherichia coli , 2012, Molecular microbiology.

[100]  Franco J. Vizeacoumar,et al.  Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae , 2012, Nature.

[101]  Elhanan Borenstein,et al.  Computational systems biology and in silico modeling of the human microbiome , 2012, Briefings Bioinform..

[102]  F. Hartl,et al.  DnaK functions as a central hub in the E. coli chaperone network. , 2012, Cell reports.

[103]  Damian Szklarczyk,et al.  eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges , 2011, Nucleic Acids Res..

[104]  Jason E. Rostron,et al.  Escherichia coli enterobactin synthesis and uptake mutants are hypersensitive to an antimicrobial peptide that limits the availability of iron in addition to blocking Holliday junction resolution. , 2012, Microbiology.

[105]  Ana Rita Brochado,et al.  Fe-S Cluster Biosynthesis Controls Uptake of Aminoglycosides in a ROS-Less Death Pathway , 2013, Science.

[106]  G. Rao,et al.  Global Stress Response in a Prokaryotic Model of DJ-1-Associated Parkinsonism , 2013, Journal of bacteriology.

[107]  J. Ortega,et al.  Escherichia coli rimM and yjeQ null strains accumulate immature 30S subunits of similar structure and protein complement. , 2013, RNA.