Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas

[1] Empirically derived kappa distributions are becoming increasingly widespread in space physics as the power law nature of various suprathermal tails is melded with more classical quasi-Maxwellian cores. Two different mathematical definitions of kappa distributions are commonly used and various authors characterize the power law nature of suprathermal tails in different ways. In this study we examine how kappa distributions arise naturally from Tsallis statistical mechanics, which provides a solid theoretical basis for describing and analyzing complex systems out of equilibrium. This analysis exposes the possible values of kappa, which are strictly limited to certain ranges. We also develop the concept of temperature out of equilibrium, which differs significantly from the classical equilibrium temperature. This analysis clarifies which of the kappa distributions has primacy and, using this distribution, the kinetic and physical temperatures become one, both in and out of equilibrium. Finally, we extract the general relation between both types of kappa distributions and the spectral indices commonly used to parameterize space plasmas. With this relation, it is straightforward to compare both spectral indices from various space physics observations, models, and theoretical studies that use kappa distributions on a consistent footing that minimizes the chances for misinterpretation and error. Now that the connection is complete between empirically derived kappa distributions and Tsallis statistical mechanics, the full strength and capability of Tsallis statistical tools are available to the space physics community for analyzing and understanding the kappa-like properties of the various particle and energy distributions observed in space.

[1]  M. Leubner Core-Halo Distribution Functions: A Natural Equilibrium State in Generalized Thermostatistics , 2004 .

[2]  S. Christon A comparison of the Mercury and Earth magnetospheres: Electron measurements and substorm time scales , 1987 .

[3]  S. Krimigis,et al.  Voyager observations of low-energy ions during solar cycle 23 , 2003 .

[4]  E. K. Lenzi,et al.  Average entropy of a subsystem from its average Tsallis entropy. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  S. D. Queiros On the emergence of a generalised Gamma distribution. Application to traded volume in financial markets , 2005 .

[6]  C. M. Hammond,et al.  Solar wind double ion beams and the heliospheric current sheet , 1995 .

[7]  Michael E. Brown,et al.  Introduction to Space Physics , 1995 .

[8]  S. Krimigis,et al.  Energetic ion spectral characteristics in the Saturnian magnetosphere using Cassini/MIMI measurements , 2009 .

[9]  Sumiyoshi Abe,et al.  Correlation induced by Tsallis’ nonextensivity , 1999 .

[10]  E. Marsch Kinetic Physics of the Solar Corona and Solar Wind , 2006 .

[11]  M. Collier The adiabatic transport of superthermal distributions modelled by Kappa Functions , 1995 .

[12]  On the generalized entropy pseudoadditivity for complex systems , 2001, cond-mat/0111541.

[13]  T. Yamano Some properties of q-logarithm and q-exponential functions in Tsallis statistics , 2002 .

[14]  N. Pogorelov,et al.  The Effects of a κ-Distribution in the Heliosheath on the Global Heliosphere and ENA Flux at 1 AU , 2008, 0803.2538.

[15]  L. Burlaga,et al.  Triangle for the entropic index q of non-extensive statistical mechanics observed by Voyager 1 in the distant heliosphere , 2005 .

[16]  G. Gloeckler,et al.  Neon-20, oxygen-16, and helium-4 densities, temperatures, and suprathermal tails in the solar wind determined with WIND/MASS , 1996 .

[17]  S. Zaharia,et al.  Particle Transport and Energization Associated with Disturbed Magnetospheric Events , 1999 .

[18]  E. Montroll,et al.  Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: A tale of tails , 1983 .

[19]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[20]  J. Dwyer,et al.  COMPOSITION AND SPECTRAL PROPERTIES OF THE 1 AU QUIET-TIME SUPRATHERMAL ION POPULATION DURING SOLAR CYCLE 23 , 2008 .

[21]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[22]  E K Lenzi,et al.  q-exponential distribution in urban agglomeration. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  On the definition of physical temperature and pressure for nonextensive thermostatistics , 2001, cond-mat/0106060.

[24]  C. Tsallis Nonextensive statistics: theoretical, experimental and computational evidences and connections , 1999, cond-mat/9903356.

[25]  M. Kallenrode,et al.  Space Physics: An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres , 1998 .

[26]  Edmond C. Roelof,et al.  Energetic ion characteristics and neutral gas interactions in Jupiter's magnetosphere , 2004 .

[27]  C. Tsallis,et al.  Are citations of scientific papers a case of nonextensivity? , 1999, cond-mat/9903433.

[28]  D. C. Hamilton,et al.  Voyager 1 in the Foreshock, Termination Shock, and Heliosheath , 2005, Science.

[29]  Constantino Tsallis,et al.  Nonequilibrium probabilistic dynamics of the logistic map at the edge of chaos. , 2002, Physical review letters.

[30]  Baranyai Numerical temperature measurement in far from equilibrium model systems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  Constantino Tsallis,et al.  Fluxes of cosmic rays: a delicately balanced stationary state , 2002 .

[32]  S. Zaharia,et al.  Particle transport and energization associated with substorms , 2000 .

[33]  H L Swinney,et al.  Measuring nonextensitivity parameters in a turbulent Couette-Taylor flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  A Nonextensive Entropy Approach to Kappa-Distributions , 2001, astro-ph/0111444.

[35]  A. Plastino,et al.  The role of constraints in Tsallis' nonextensive treatment revisited , 2005 .

[36]  R. Treumann,et al.  Stationary plasma states far from equilibrium , 2004 .

[37]  Michael Nilges,et al.  Replica-exchange Monte Carlo scheme for bayesian data analysis. , 2005, Physical review letters.

[38]  Sumiyoshi Abe,et al.  Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: a basis for q-exponential distributions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  C. Tsallis,et al.  The role of constraints within generalized nonextensive statistics , 1998 .

[40]  I. Dandouras,et al.  Multi-instrument analysis of electron populations in Saturn's magnetosphere , 2008 .

[41]  George Gloeckler,et al.  The Common Spectrum for Accelerated Ions in the Quiet-Time Solar Wind , 2006 .

[42]  Du Jiulin,et al.  The nonextensive parameter and Tsallis distribution for self-gravitating systems , 2004 .

[43]  A Maxwellian path to the q-nonextensive velocity distribution function , 1998, cond-mat/0201503.

[44]  L. Borland Option pricing formulas based on a non-Gaussian stock price model. , 2002, Physical review letters.

[45]  Straub,et al.  Generalized simulated annealing algorithms using Tsallis statistics: Application to conformational optimization of a tetrapeptide. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  Marcelo A. Montemurro,et al.  Beyond the Zipf-Mandelbrot law in quantitative linguistics , 2001, ArXiv.

[47]  Generalized-Lorentzian Thermodynamics , 1998, physics/9808037.

[48]  L. Zelenyi,et al.  Functional background of the Tsallis entropy: "coarse-grained" systems and "kappa" distribution functions , 2000 .

[49]  S. Abe,et al.  Itineration of the Internet over nonequilibrium stationary states in Tsallis statistics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  M. P. Leubner,et al.  A Nonextensive Entropy Approach to Solar Wind Intermittency , 2004, astro-ph/0409497.

[51]  T. Nieves‐Chinchilla,et al.  Solar wind electron distribution functions inside magnetic clouds , 2008 .

[52]  C. Tsallis,et al.  Nonextensive foundation of Lévy distributions. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  Kappa-like distribution functions inside magnetic clouds , 2008 .

[54]  C. Tsallis,et al.  Generalized simulated annealing , 1995, cond-mat/9501047.

[55]  D. Jou,et al.  Characterization and measurement of a nonequilibrium temperature-like variable in irreversible thermodynamics , 1997 .

[56]  B. Shizgal Suprathermal particle distributions in space physics: Kappa distributions and entropy , 2007 .

[57]  Temperature and measurement: comparison between two models of nonequilibrium radiation , 1999 .

[58]  Nathan A. Schwadron,et al.  The suprathermal seed population for corotating interaction region ions at 1 AU deduced from composition and spectra of H+, He++, and He+ observed on Wind , 2000 .

[59]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[60]  S. D. Queiros On the distribution of high-frequency stock market traded volume: a dynamical scenario , 2005, cond-mat/0502337.

[61]  C. G. Hoover,et al.  Nonequilibrium temperature and thermometry in heat-conducting phi4 models. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Sumiyoshi Abe,et al.  Nonextensive thermodynamic relations , 2000 .

[63]  C. Tsallis,et al.  Nonextensive Entropy: Interdisciplinary Applications , 2004 .

[64]  Johannes Geiss,et al.  Interstellar and Inner Source Pickup Ions Observed with Swics on Ulysses , 1998 .

[65]  E. Roelof,et al.  On electron acceleration at CIR related shock waves , 2002 .

[66]  V. Vasyliūnas,et al.  A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. , 1968 .

[67]  Renio S. Mendes,et al.  Is re-association in folded proteins a case of nonextensivity? , 1999 .

[68]  Oscar Sotolongo-Costa,et al.  Tsallis Entropy and the Transition to Scaling in Fragmentation , 2000, Entropy.

[69]  Jiulin Du The nonextensive parameter and Tsallis distribution for self-gravitating systems , 2004 .

[70]  Self-gravitating stellar systems and non-extensive thermostatistics , 2003, cond-mat/0310082.

[71]  M. Leubner Fundamental issues on kappa-distributions in space plasmas , 2003 .

[72]  Oscar Sotolongo-Costa,et al.  Fragment-asperity interaction model for earthquakes. , 2004, Physical review letters.

[73]  A. Robledo RENORMALIZATION GROUP, ENTROPY OPTIMIZATION, AND NONEXTENSIVITY AT CRITICALITY , 1999 .

[74]  Kenichiro Aoki,et al.  Time-reversible deterministic thermostats , 2004 .

[75]  C. Tsallis,et al.  Anomalous distributions, nonlinear dynamics, and nonextensivity , 2004 .

[76]  Tsallis statistics: averages and a physical interpretation of the Lagrange multiplier β , 2000, cond-mat/0006279.

[77]  E. Antonova,et al.  On the role of non-Maxwellian forms of distribution functions in the process of acceleration of auroral particles , 2006 .

[78]  S. Nozawa,et al.  Effects of a kappa distribution function of electrons on incoherent scatter spectra , 2000 .

[79]  Constantino Tsallis,et al.  Computational applications of nonextensive statistical mechanics , 2009 .

[80]  M. Collier Are magnetospheric suprathermal particle distributions (κ functions) inconsistent with maximum entropy considerations , 2004 .

[81]  S. E. Hawkins,et al.  Bulk flows of hot plasma in the Jovian magnetosphere: A model of anisotropic fluxes of energetic ions , 1998 .

[82]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[83]  R. Silva,et al.  Nonextensive models for earthquakes. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  N. Pogorelov,et al.  Implications of solar wind suprathermal tails for IBEX ENA images of the heliosheath , 2008 .

[85]  Richard M. Thorne,et al.  The modified plasma dispersion function , 1991 .

[86]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[87]  Baranyai,et al.  Temperature of nonequilibrium steady-state systems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[88]  Nonextensive thermodynamics of the two-site Hubbard model , 2004, cond-mat/0410045.

[89]  M. Gruntman Anisotropy of the energetic neutral atom flux in the heliosphere , 1992 .

[90]  Y. Murayama,et al.  Energy distribution of precipitating electrons estimated from optical and cosmic noise absorption measurements , 2003 .