Bounds for the chaotic region in the Lorenz model
暂无分享,去创建一个
[1] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[2] Roberto Barrio,et al. VSVO formulation of the taylor method for the numerical solution of ODEs , 2005 .
[3] R. A. Smith,et al. Some applications of Hausdorff dimension inequalities for ordinary differential equations , 1986, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[4] R. F. Williams,et al. Structural stability of Lorenz attractors , 1979 .
[5] Holger R. Dullin,et al. Extended Phase Diagram of the Lorenz Model , 2005, Int. J. Bifurc. Chaos.
[6] Ferdinand Verhulst,et al. Invariant Manifolds in Dissipative Dynamical Systems , 2005 .
[7] Roberto Barrio,et al. A three-parametric study of the Lorenz model , 2007 .
[8] L. Sanchez,et al. Convergence to equilibria in the Lorenz system via monotone methods , 2005 .
[9] Knut H. Alfsen,et al. Systematics of the Lorenz Model at σ = 10 , 1985 .
[10] Roberto Barrio,et al. Sensitivity tools vs. Poincaré sections , 2005 .
[11] Roberto Barrio,et al. Spurious structures in chaos indicators maps , 2009 .
[12] Barry Saltzman,et al. Finite Amplitude Free Convection as an Initial Value Problem—I , 1962 .
[13] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[14] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[15] Bernd Krauskopf,et al. Crocheting the Lorenz Manifold , 2004 .
[16] Xinfu Chen. Lorenz Equations Part I: Existence and Nonexistence of Homoclinic Orbits , 1996 .
[17] Roberto Barrio,et al. Painting Chaos: a Gallery of Sensitivity Plots of Classical Problems , 2006, Int. J. Bifurc. Chaos.
[18] Hans G. Kaper,et al. Asymptotic analysis of two reduction methods for systems of chemical reactions , 2002 .
[19] John Guckenheimer,et al. The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..
[20] James A. Yorke,et al. Preturbulence: A regime observed in a fluid flow model of Lorenz , 1979 .
[21] L. Shilnikov,et al. NORMAL FORMS AND LORENZ ATTRACTORS , 1993 .
[22] L. Chua,et al. Methods of qualitative theory in nonlinear dynamics , 1998 .
[23] Roberto Barrio,et al. Sensitivity Analysis of ODES/DAES Using the Taylor Series Method , 2005, SIAM J. Sci. Comput..
[24] J. Craggs. Applied Mathematical Sciences , 1973 .
[25] Valentin Afraimovich,et al. Origin and structure of the Lorenz attractor , 1977 .
[26] Peter Swinnerton-Dyer,et al. Bounds for trajectories of the Lorenz equations: an illustration of how to choose Liapunov functions , 2001 .
[27] John Guckenheimer,et al. Periodic Orbit Continuation in Multiple Time Scale Systems , 2007 .
[28] David Aubin,et al. Writing the History of Dynamical Systems and Chaos: Longue Durée and Revolution, Disciplines and Cultures , 2002 .
[29] William C. Troy,et al. A Proof That the Lorenz Equations Have a Homoclinic Orbit , 1994 .
[30] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[31] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[32] A. Rauh,et al. Analytical investigation of the hopf bifurcation in the Lorenz model , 1986 .
[33] M. Viana. What’s new on lorenz strange attractors? , 2000 .
[34] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[35] Roberto Barrio,et al. Performance of the Taylor series method for ODEs/DAEs , 2005, Appl. Math. Comput..
[36] Guanrong Chen,et al. Estimating the bounds for the Lorenz family of chaotic systems , 2005 .
[37] V. V. Bykov,et al. The bifurcations of separatrix contours and chaos , 1993 .
[38] Bernd Krauskopf,et al. Global bifurcations of the Lorenz manifold , 2006 .
[39] K. Robbins,et al. Periodic solutions and bifurcation structure at high R in the Lorenz model , 1979 .
[40] Martin Corless,et al. Slow and fast invariant manifolds, and normal modes in a two degree-of-freedom structural dynamical system with multiple equilibrium states , 1998 .
[41] Warwick Tucker,et al. Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .