The Observer Error Linearization Problem via Dynamic Compensation

Linearization by output injection has played a key role in the observer design for nonlinear control systems for almost three decades. In this technical note, following some recent works, geometric necessary and sufficient conditions are derived for the existence of a dynamic compensator solving the problem under regular output transformation. An algorithm which computes a compensator of minimal order is given.

[1]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[2]  Claude H. Moog,et al.  On the observer canonical form for Nonlinear Time–Delay Systems , 2011 .

[3]  Hyungbo Shim,et al.  Reduced-order Dynamic Observer Error Linearization , 2010 .

[4]  Juhoon Back,et al.  Dynamic Observer Error Linearization , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[5]  Gildas Besançon,et al.  On output transformations for state linearization up to output injection , 1999, IEEE Trans. Autom. Control..

[6]  Juhoon Back,et al.  An algorithm for system immersion into nonlinear observer form: SISO case , 2006, Autom..

[7]  L. Praly,et al.  Remarks on the existence of a Kazantzis-Kravaris/Luenberger observer , 2004, CDC.

[8]  C. Moog,et al.  New algebraic-geometric conditions for the linearization by input-output injection , 1996, IEEE Trans. Autom. Control..

[9]  Salvatore Monaco,et al.  Linearization by Output Injection under Approximate Sampling , 2009, Eur. J. Control.

[10]  MingQing Xiao,et al.  Nonlinear Observer Design in the Siegel Domain , 2002, SIAM J. Control. Optim..

[11]  H. Keller Non-linear observer design by transformation into a generalized observer canonical form , 1987 .

[12]  Hassan Hammouri,et al.  A new procedure for time-varying linearization up to output injection , 1996 .

[13]  J. Karafyllis,et al.  On the Observer Problem for Discrete-Time Control Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[14]  M. Hou,et al.  Observer with linear error dynamics for nonlinear multi-output systems , 1999 .

[15]  Franck Plestan,et al.  Linearization by generalized input-output injection , 1997 .

[16]  X. Xia,et al.  Nonlinear observer design by observer error linearization , 1989 .

[17]  Martín Velasco-Villa,et al.  Observability and observers for nonlinear systems with time delays , 2000, Kybernetika.

[18]  J. Back,et al.  Constructive algorithm for dynamic observer error linearization via integrators: single output case , 2007 .

[19]  Gang Feng,et al.  Observer design for nonlinear discrete‐time systems: Immersion and dynamic observer error linearization techniques , 2009 .

[20]  Driss Boutat,et al.  On Observation of Time-Delay Systems With Unknown Inputs , 2011, IEEE Transactions on Automatic Control.

[21]  S. Monaco,et al.  On the observer design through output scaling in discrete-time , 2010, Proceedings of the 2010 American Control Conference.

[22]  Driss Boutat,et al.  GEOMETRICAL CONDITIONS FOR OBSERVER ERROR LINEARIZATION VIA 0 → 1, … → (N – 2) – ∨ , 2007 .

[23]  Hassan Hammouri,et al.  State equivalence of discrete-time nonlinear control systems to state affine form up to input/output injection , 1998 .

[24]  Alan F. Lynch,et al.  A Block Triangular Form for Nonlinear Observer Design , 2006, IEEE Transactions on Automatic Control.

[25]  H. J. C. Huijberts,et al.  On existence of extended observers for nonlinear discrete-time systems , 1999 .

[26]  노대종,et al.  Nonlinear observer design by dynamic observer error linearization , 2001 .

[27]  Henk Nijmeijer,et al.  Time scaling for observer design with linearizable error dynamics , 2004, Autom..

[28]  Ülle Kotta,et al.  Extended observer form: simple existence conditions , 2013, Int. J. Control.

[29]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[30]  Philippe Jouan,et al.  Immersion of nonlinear systems into linear systems modulo output injection , 2002, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[31]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[32]  Alain Glumineau,et al.  Direct transformation of nonlinear systems into state affine MISO form for observer design , 2003, IEEE Trans. Autom. Control..

[33]  Wei Lin,et al.  Remarks on linearization of discrete-time autonomous systems and nonlinear observer design , 1995 .

[34]  Salvatore Monaco,et al.  Canonical observer forms for multi-output systems up to coordinate and output transformations in discrete time , 2009, Autom..

[35]  Driss Boutat,et al.  On the transformation of nonlinear dynamical systems into the extended nonlinear observable canonical form , 2011, Int. J. Control.

[36]  C. Kravaris,et al.  Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[37]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[38]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .