Tool Orientation Optimization and Path Planning for 5-Axis Machining

Tool path generation is a fundamental problem in 5-axis CNC machining, which consists of tool orientation planning and cutter-contact (CC) point planning. The planning strategy highly depends on the type of tool cutters. For ball-end cutters, the tool orientation and CC point location can be planned separately; while for flat end cutters, the two are highly dependent on each other. This paper generates a smooth tool path of workpiece surfaces for flat end mills from two stages: Computing smooth tool orientations on the surface without gouging and collisions and then designing the CC point path. By solving the tool posture optimization problem the authors achieve both the path smoothness and the machining efficiency. Experimental results are provided to show the effectiveness of the method.

[1]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[2]  Y. Chen,et al.  A three-dimensional configuration-space method for 5-axis tessellated surface machining , 2008, Int. J. Comput. Integr. Manuf..

[3]  Jianzhong Fu,et al.  Non-singular tool path planning by translating tool orientations in C-space , 2014 .

[4]  Kai Tang,et al.  Efficiency-optimal iso-planar tool path generation for five-axis finishing machining of freeform surfaces , 2017, Comput. Aided Des..

[5]  Chandrajit L. Bajaj,et al.  Generation of configuration space obstacles: The case of moving algebraic curves , 2005, Algorithmica.

[6]  Aun Neow Poo,et al.  Adaptive iso-planar tool path generation for machining of free-form surfaces , 2003, Comput. Aided Des..

[7]  Beijing,et al.  A new iso-scallop height tool path planning method in three-dimensional space , 2012 .

[8]  Pascal Ray,et al.  The Domain of Admissible Orientation concept: A new method for five-axis tool path optimisation , 2008, Comput. Aided Des..

[9]  Gershon Elber,et al.  Precise gouging-free tool orientations for 5-axis CNC machining , 2015, Comput. Aided Des..

[10]  Yoshimi Takeuchi,et al.  Collision-free tool path generation using 2-dimensional C-space for 5-axis control machining , 1997 .

[11]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[12]  Chen-Han Lee,et al.  Tool path generation algorithm based on covariant field theory and cost functional optimization and its applications in blade machining , 2017 .

[13]  Gershon Elber,et al.  Toolpath generation for freeform surface models , 1994, Comput. Aided Des..

[14]  Krishnan Suresh,et al.  Constant Scallop-height Machining of Free-form Surfaces , 1994 .

[15]  Qiang Zhang,et al.  Time optimal feedrate generation with confined tracking error based on linear programming , 2015, J. Syst. Sci. Complex..

[16]  Yuan-Shin Lee,et al.  Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining , 1998, Comput. Aided Des..

[17]  Kai Tang,et al.  Collision-free tool orientation optimization in five-axis machining of bladed disk , 2015, J. Comput. Des. Eng..

[18]  Kai Tang,et al.  Optimal five-axis tool path generation algorithm based on double scalar fields for freeform surfaces , 2016 .

[19]  Christophe Tournier,et al.  A physically-based model for global collision avoidance in 5-axis point milling , 2015, Comput. Aided Des..

[20]  Li-Yong Shen,et al.  Tool orientation optimization for 5-axis machining with C-space method , 2017 .

[21]  Gregory C Loney,et al.  NC machining of free form surfaces , 1987 .

[22]  Hsi-Yung Feng,et al.  Preferred feed direction field: A new tool path generation method for efficient sculptured surface machining , 2015, Comput. Aided Des..

[23]  Xu Liu,et al.  A tool path generation method for freeform surface machining by introducing the tensor property of machining strip width , 2015, Comput. Aided Des..

[24]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[25]  Yuan-Shin Lee,et al.  Optimizing tool orientations for 5-axis machining by configuration-space search method , 2003, Comput. Aided Des..

[26]  Bailin Deng,et al.  Iso-level tool path planning for free-form surfaces , 2014, Comput. Aided Des..

[27]  Piyush Bubna,et al.  Selection of master cutter paths in sculptured surface machining by employing curvature principle , 2005 .

[28]  Daniel C. H. Yang,et al.  Iso-phote Based Tool-path Generation for Machining Free-form Surfaces , 1999 .

[29]  Yoram Koren,et al.  Efficient Tool-Path Planning for Machining Free-Form Surfaces , 1996 .

[30]  Chuang-Jang Chiou,et al.  A machining potential field approach to tool path generation for multi-axis sculptured surface machining , 2002, Comput. Aided Des..

[31]  Chen-Han Lee,et al.  Cutter partition-based tool orientation optimization for gouge avoidance in five-axis machining , 2018 .

[32]  Nan Wang,et al.  Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath , 2007, Comput. Aided Des..

[33]  Qiang Zou,et al.  Iso-parametric tool-path planning for point clouds , 2013, Comput. Aided Des..

[34]  Stephen P. Radzevich Kinematic geometry of surface machining , 2007 .

[35]  Bin Wang,et al.  Investigation of interference effects on the burnishing process , 2018 .