Simultaneous Source for non-uniform data variance and missing data

The use of simultaneous sources in geophysical inverse problems has revolutionized the ability to deal with large scale data sets that are obtained from multiple source experiments. However, the technique breaks when the data has non-uniform standard deviation or when some data are missing. In this paper we develop, study, and compare a number of techniques that enable to utilize advantages of the simultaneous source framework for these cases. We show that the inverse problem can still be solved efficiently by using these new techniques. We demonstrate our new approaches on the Direct Current Resistivity inverse problem.

[1]  U. Ascher,et al.  Adaptive and stochastic algorithms for EIT and DC resistivity problems with piecewise constant solutions and many measurements , 2011 .

[2]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[3]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[4]  Max Deffenbaugh,et al.  Efficient seismic forward modeling using simultaneous random sources and sparsity , 2010 .

[5]  J. Krebs,et al.  Fast full-wavefield seismic inversion using encoded sources , 2009 .

[6]  R. Parker Geophysical Inverse Theory , 1994 .

[7]  Nariida C. Smith,et al.  Two-Dimensional DC Resistivity Inversion for Dipole-Dipole Data , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[8]  H. Malcolm Hudson,et al.  Accelerated image reconstruction using ordered subsets of projection data , 1994, IEEE Trans. Medical Imaging.

[9]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[10]  Tariq Alkhalifah The fast marching method in Spherical coordinates: SEG/EAGE salt-dome model , 1998 .

[11]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[12]  E. Haber,et al.  Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach , 2004 .

[13]  R. Vershynin,et al.  A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.

[14]  Alexander Shapiro,et al.  The empirical behavior of sampling methods for stochastic programming , 2006, Ann. Oper. Res..

[15]  Gregory A. Newman,et al.  Three‐dimensional massively parallel electromagnetic inversion—I. Theory , 1997 .

[16]  Eldad Haber,et al.  An Effective Method for Parameter Estimation with PDE Constraints with Multiple Right-Hand Sides , 2012, SIAM J. Optim..

[17]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[18]  Mauricio D. Sacchi,et al.  Accurate interpolation with high-resolution time-variant Radon transforms , 2002 .

[19]  G. Newman,et al.  Three-dimensional massively parallel electromagnetic inversion—II. Analysis of a crosswell electromagnetic experiment , 1997 .

[20]  Stephen K. Park,et al.  Three-dimensional magnetotelluric modelling and inversion , 1983 .

[21]  A. Morelli Inverse Problem Theory , 2010 .

[22]  Felix J. Herrmann,et al.  Seismic Waveform Inversion by Stochastic Optimization , 2011 .

[23]  A. Devaney The limited-view problem in diffraction tomography , 1989 .

[24]  G. Newman,et al.  Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .

[25]  R. L. Mackie,et al.  Three-dimensional magnetotelluric modelling and inversion , 1989, Proc. IEEE.

[26]  Uri M. Ascher,et al.  Fast Finite Volume Simulation of 3D Electromagnetic Problems with Highly Discontinuous Coefficients , 2000, SIAM J. Sci. Comput..

[27]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .

[28]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[29]  Max Deffenbaugh,et al.  Efficient Seismic Forward Modeling and Acquisition using Simultaneous Random Sources and Sparsity , .

[30]  E. Haber,et al.  On optimization techniques for solving nonlinear inverse problems , 2000 .

[31]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..