The theory of metal - ceramic interfaces

The theory of metal - ceramic interfaces is a collection of approaches which are complementary. They range from thermodynamic modelling based on empirical correlations, through the image model of adhesion, semi-empirical tight-binding calculations, to first-principles calculations based on applying the density functional theory or Hartree - Fock theory. This article reviews the present state of theoretical calculations, with particular reference to electronic structure and adhesion. A section on the thermodynamic background clarifies the concept of work of adhesion which is the goal of many calculations. Cluster models and periodic slabs have been considered, both self-consistent and non-self-consistent. The most sophisticated and complete calculations have been made for metals on MgO and alumina. There a consistent picture of the nature of the bonding has emerged, although there are still significant unexplained discrepancies in numerical values.

[1]  M. Nicholas,et al.  Ceramic/metal joining for structural applications , 1985 .

[2]  A. Anderson,et al.  Dopant Effect of Yttrium and the Growth and Adherence of Alumina on Nickel‐Aluminum Alloys , 1985 .

[3]  A. Anderson,et al.  Sulfur at nickel-alumina interfaces : molecular orbital theory , 1990 .

[4]  C. P. Flynn,et al.  High-resolution electron microscopy studies of Nb/Al2O3 interfaces , 1990 .

[5]  O. K. Andersen,et al.  Bonding at metal-ceramic interfaces; AB Initio density-functional calculations for Ti and Ag on MgO , 1992 .

[6]  M. Bäumer,et al.  Structural characterization of platinum deposits supported on ordered alumina films , 1994 .

[7]  Hans-Joachim Freund,et al.  Structure and defects of an ordered alumina film on NiAl(110) , 1994 .

[8]  S. Pepper,et al.  Molecular‐orbital model for metal‐sapphire interfacial strength , 1982 .

[9]  Volker Heine,et al.  Theory of Surface States , 1965 .

[10]  C. P. Flynn,et al.  Structure and defects of MBE grown NbAl2O3 interfaces , 1992 .

[11]  M. Gillan,et al.  Structure of the (0001) surface of α-Al2O3 from first principles calculations , 1993 .

[12]  R. French,et al.  Theoretical and experimental studies on Cu metallization of Al2O3 , 1988 .

[13]  Wu,et al.  Energetics, bonding mechanism, and electronic structure of metal-ceramic interfaces: Ag/MgO(001). , 1993, Physical review. B, Condensed matter.

[14]  Manfred Rühle,et al.  The influence of interface impurities on fracture energy of UHV diffusion bonded metal-ceramic bicrystals , 1994 .

[15]  T. Madey,et al.  Ultrathin reactive metal films on TiO2(110): growth, interfacial interaction and electronic structure of chromium films , 1993 .

[16]  B. Drevet,et al.  Experimental study of the influence of interfacial energies and reactivity on wetting in metal/oxide systems , 1994 .

[17]  M. Kohyama,et al.  Electronic Structure and Chemical Reactions at Metal–Alumina and Metal–Aluminum Nitride Interfaces , 1991 .

[18]  P. Jena,et al.  Quantum chemical study of adhesion at the SiC/Al interface , 1988 .

[19]  C. P. Flynn,et al.  Structural relaxation at the Ag/MgO (001) interface measured by grazing incidence x-ray diffraction , 1994 .

[20]  Diebold,et al.  Electronic structure of ultrathin Fe films on TiO2(110) studied with soft-x-ray photoelectron spectroscopy and resonant photoemission. , 1994, Physical review. B, Condensed matter.

[21]  Roald Hoffmann,et al.  Solids and surfaces , 1988 .

[22]  W. Ching,et al.  First‐Principles Calculation of Electronic, Optical, and Structural Properties of α‐Al2O3 , 1994 .

[23]  A. Heuer,et al.  HRTEM study of a Cu/Al2O3 interface , 1991 .

[24]  M. Gautier,et al.  Influence of the substrate oxidation state in the growth of copper clusters on Al2O3(0001) surface: a XANES and EXAFS study , 1995 .

[25]  H. Freund,et al.  Structural characterization of a model catalyst: Pt/Al2O3/NiAl(110) , 1995 .

[26]  Hans-Joachim Freund,et al.  Metal Oxide Surfaces: Electronic Structure and Molecular Adsorption , 1995 .

[27]  John H. Harding,et al.  Atomistic modelling of metal-oxide interfaces with image interactions , 1993 .

[28]  A. M. Stoneham,et al.  A simulation of the NiO/Ag interface with point defects , 1995 .

[29]  B. Segall,et al.  Electronic structure of SiCTiC interfaces , 1992 .

[30]  Chan,et al.  Chemistry and structure of CdO/Ag{222} heterophase interfaces. , 1995, Physical review letters.

[31]  David J. Srolovitz,et al.  Theory of metal—Ceramic adhesion , 1995 .

[32]  J. Bruley,et al.  Investigations of the chemistry and bonding at niobiumsapphire interfaces , 1994 .

[33]  D. Srolovitz,et al.  Metal / ceramic adhesion: a first principles study of MgO/Al and MgO/Ag , 1994 .

[34]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[35]  M. Finnis Metal-ceramic cohesion and the image interaction , 1992 .

[36]  D. Pettifor,et al.  Electron theory in alloy design , 1992 .

[37]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[38]  M. Gillan,et al.  First‐Principles Calculations for Niobium Atoms on a Sapphire Surface , 1994 .

[39]  W. Mader,et al.  Chemical composition and lattice relaxations at diffusion-bonded Nb/Al2O3 interfaces , 1991 .

[40]  C. P. Flynn,et al.  High resolution transmission electron microscopy studies of the Ag/MgO interface , 1992 .

[41]  A. Freeman,et al.  Magnetism at metal-ceramic interfaces: effects of a Au overlayer on the magnetic properties of Fe/MgO(001) , 1994 .

[42]  B. Drevet,et al.  Interfacial bonding, wettability and reactivity in metal/oxide systems , 1994 .

[43]  Nieminen,et al.  Erratum: Theory of hydrogen and helium impurities in metals , 1984, Physical review. B, Condensed matter.

[44]  M. Scheffler,et al.  The interaction of a point charge with a metal surface: theory and calculations for (111), (100) and (110) aluminium surfaces , 1995 .

[45]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[46]  N. H. March,et al.  Theory of the inhomogeneous electron gas , 1983 .

[47]  A. Stoneham Systematics of metal-insulator interfacial energies: A new rule for wetting and strong catalyst-support interactions , 1983 .

[48]  R. Yamamoto,et al.  Electronic structure calculations of transition metal-alumina interfaces , 1992 .

[49]  Nath,et al.  Oxidative bonding of (0001) alpha -Al2O3 to close-packed surfaces of the first transition-metal series, Sc through Cu. , 1989, Physical review. B, Condensed matter.

[50]  C. Peden,et al.  Metal/metal‐oxide interfaces: A surface science approach to the study of adhesion , 1991 .

[51]  Seidman,et al.  Atomic scale studies of segregation at ceramic/metal heterophase interfaces. , 1995, Physical review letters.

[52]  A. M. Stoneham,et al.  THE ENERGIES OF POINT-DEFECTS NEAR METAL-OXIDE INTERFACES , 1994 .

[53]  Y. Ikuhara,et al.  A high-resolution electron microscopy study of vanadium deposited on the basal plane of sapphire , 1993 .

[54]  W. Kingery,et al.  Metal‐Ceramic Interactions: III, Surface Tension and Wettability of Metal‐Ceramic Systems , 1954 .

[55]  M. Rühle,et al.  Electron microscopy studies of defects at diffusion-bonded Nb/Al2O3 interfaces , 1989 .

[56]  R. Hoffmann,et al.  Metal-ceramic adhesion: quantum mechanical modeling of transition metal-alumina interfaces , 1993 .

[57]  B. Drevet,et al.  Wettability and interfacial bonding in AuSi/SiC system , 1993 .

[58]  Ju.V. Naidich,et al.  The Wettability of Solids by Liquid Metals , 1981 .

[59]  Jian-Guo Li Wetting and Interfacial Bonding of Metals with Ionocovalent Oxides , 1992 .

[60]  Joachim Mayer,et al.  The niobium/sapphire interface: Structural studies by HREM , 1994 .

[61]  M. W. Finnis,et al.  The interaction of a point charge with an aluminium (111) surface , 1991 .

[62]  Ohuchi,et al.  Electronic structure of Cu overlayers on AlN. , 1987, Physical review. B, Condensed matter.

[63]  T. Madey,et al.  Ultrathin metal film growth on TiO2(110): an overview , 1995 .

[64]  D. Seidman,et al.  The chemical composition of a metal/ceramic interface on an atomic scale: The Cu/MgO {111} interface , 1993 .

[65]  P. Alemany Metal-ceramic adhesion: band structure calculations on transition-metal-AlN interfaces , 1994 .

[66]  Wetting and adhesion of Ni-Al alloys on α-Al2O3 single crystals , 1995, Journal of Materials Science.

[67]  Alfred B. Anderson,et al.  ADHESION AND BONDING OF POLAR AND NON-POLAR SIC SURFACES TO TI(0001) , 1991 .

[68]  James M. Howe,et al.  Bonding, structure, and properties of metal/ceramic interfaces: Part 1 Chemical bonding, chemical reaction, and interfacial structure , 1993 .