Algorithm for direct numerical simulation of emulsion flow through a granular material

[1]  Alexander Z. Zinchenko,et al.  Squeezing of a periodic emulsion through a cubic lattice of spheres , 2008 .

[2]  Jingfang Huang,et al.  A parallel fast multipole accelerated integral equation scheme for 3D Stokes equations , 2007 .

[3]  Henry Power,et al.  A 3-D indirect boundary element method for bounded creeping flow of drops , 2006 .

[4]  Robert H. Davis,et al.  A boundary-integral study of a drop squeezing through interparticle constrictions , 2006, Journal of Fluid Mechanics.

[5]  Ghassan S. Kassab,et al.  Computer Modeling of Red Blood Cell Rheology in the Microcirculation: A Brief Overview , 2005, Annals of Biomedical Engineering.

[6]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[7]  V. Cristini,et al.  Adaptive unstructured volume remeshing - II: Application to two- and three-dimensional level-set simulations of multiphase flow , 2005 .

[8]  Xiaoming Zheng,et al.  Adaptive unstructured volume remeshing - I: The method , 2005 .

[9]  Alexander Z. Zinchenko,et al.  A multipole-accelerated algorithm for close interaction of slightly deformable drops , 2005 .

[10]  G. Rodin,et al.  Periodic conduction problems: the fast multipole method and convergence of integral equations and lattice sums , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  D. Zorin,et al.  A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .

[12]  M. Loewenberg,et al.  Hindered and enhanced coalescence of drops in stokes flows. , 2004, Physical review letters.

[13]  M. Loewenberg,et al.  A study of emulsion expansion by a boundary integral method , 2003 .

[14]  Alexander Z. Zinchenko,et al.  Large–scale simulations of concentrated emulsion flows , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Alexander Z. Zinchenko,et al.  Shear flow of highly concentrated emulsions of deformable drops by numerical simulations , 2002, Journal of Fluid Mechanics.

[16]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[17]  Vittorio Cristini,et al.  An adaptive mesh algorithm for evolving surfaces: simulation of drop breakup and coalescence , 2001 .

[18]  J. Higdon,et al.  Oscillatory flow of droplets in capillary tubes. Part 2. Constricted tubes , 2000, Journal of Fluid Mechanics.

[19]  J. Higdon,et al.  Oscillatory flow of droplets in capillary tubes. Part 1. Straight tubes , 2000, Journal of Fluid Mechanics.

[20]  Robert H. Davis,et al.  An Efficient Algorithm for Hydrodynamical Interaction of Many Deformable Drops , 2000 .

[21]  Alexander Z. Zinchenko,et al.  Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm , 1999, Journal of Fluid Mechanics.

[22]  Alexander Z. Zinchenko,et al.  Effective conductivity of loaded granular materials by numerical simulation , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[24]  Alexander Z. Zinchenko,et al.  A novel boundary-integral algorithm for viscous interaction of deformable drops , 1997 .

[25]  E. J. Hinch,et al.  Numerical simulation of a concentrated emulsion in shear flow , 1996, Journal of Fluid Mechanics.

[26]  A. Sangani,et al.  An O(N) algorithm for Stokes and Laplace interactions of particles , 1996 .

[27]  T. Secomb,et al.  Mechanics of blood flow in the microcirculation. , 1995, Symposia of the Society for Experimental Biology.

[28]  Alexander Z. Zinchenko,et al.  Algorithm for random close packing of spheres with periodic boundary conditions , 1994 .

[29]  A. Sangani,et al.  A method for computing Stokes flow interactions among spherical objects and its application to suspensions of drops and porous particles , 1994 .

[30]  Alexander Z. Zinchenko,et al.  An efficient algorithm for calculating multiparticle thermal interaction in a concentrated dispersion of spheres , 1994 .

[31]  J. Higdon,et al.  Oscillatory Stokes flow in periodic porous media , 1992 .

[32]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[33]  C. Pozrikidis Boundary Integral and Singularity Methods for Linearized Viscous Flow: Index , 1992 .

[34]  S. G. Yiantsios,et al.  Close approach and deformation of two viscous drops due to gravity and van der waals forces , 1991 .

[35]  Anthony J. C. Ladd,et al.  Hydrodynamic transport coefficients of random dispersions of hard spheres , 1990 .

[36]  S. G. Yiantsios,et al.  On the buoyancy-driven motion of a drop towards a rigid surface or a deformable interface , 1990, Journal of Fluid Mechanics.

[37]  E. Liniger,et al.  Random loose packings of uniform spheres and the dilatancy onset. , 1990, Physical review letters.

[38]  A. Z. Zinchenko Effective dielectric constant of concentrated fiber composites studied by direct numerical simulation , 1990 .

[39]  Eric S. G. Shaqfeh,et al.  The instability of a dispersion of sedimenting spheroids , 1989, Journal of Fluid Mechanics.

[40]  H. Power,et al.  Second kind integral equation formulation of Stokes' flows past a particle of arbitary shape , 1987 .

[41]  F. Hebeker Efficient boundary element methods for three‐dimensional exterior viscous flows , 1986 .

[42]  James D. Louck,et al.  Angular Momentum in Quantum Physics: Theory and Application , 1984 .

[43]  A. Acrivos,et al.  Slow flow through a periodic array of spheres , 1982 .

[44]  George M. Homsy,et al.  Stokes flow through periodic arrays of spheres , 1982, Journal of Fluid Mechanics.

[45]  J. M. Rallison A numerical study of the deformation and burst of a viscous drop in general shear flows , 1981, Journal of Fluid Mechanics.

[46]  A. Acrivos,et al.  A numerical study of the deformation and burst of a viscous drop in an extensional flow , 1978, Journal of Fluid Mechanics.

[47]  David R. McKenzie,et al.  The conductivity of lattices of spheres - II. The body centred and face centred cubic lattices , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[48]  Leslie V. Woodcock,et al.  Glass transition in the hard-sphere model , 1976 .

[49]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[50]  D. Kilgour,et al.  The density of random close packing of spheres , 1969 .

[51]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[52]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers , 1961 .

[53]  H. Hasimoto On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres , 1959, Journal of Fluid Mechanics.

[54]  E. Hobson The Theory of Spherical and Ellipsoidal Harmonics , 1955 .

[55]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.