Stem cells from umbilical cord blood do have myogenic potential, with and without differentiation induction in vitro

[1]  M. Zatz,et al.  Human multipotent adipose‐derived stem cells restore dystrophin expression of Duchenne skeletal‐muscle cells in vitro , 2008, Biology of the cell.

[2]  M. Zatz,et al.  Stem cells from umbilical cord blood differentiate into myotubes and express dystrophin in vitro only after exposure to in vivo muscle environment , 2007, Biology of the cell.

[3]  S. Finklestein,et al.  Human Umbilical Cord Blood Cells Differentiate into Muscle in sjl Muscular Dystrophy Mice , 2004, Stem cells.

[4]  J. Minguell,et al.  Signals from damaged but not undamaged skeletal muscle induce myogenic differentiation of rat bone-marrow-derived mesenchymal stem cells. , 2004, Experimental cell research.

[5]  M. Sampaolesi,et al.  New therapies for muscular dystrophy: cautious optimism. , 2004, Trends in molecular medicine.

[6]  S. Hwang,et al.  Skeletal Myogenic Differentiation of Mesenchymal Stem Cells Isolated from Human Umbilical Cord Blood , 2004, Stem cells.

[7]  M. Goodell,et al.  Skeletal Muscle Fiber‐Specific Green Autofluorescence: Potential for Stem Cell Engraftment Artifacts , 2004, Stem cells.

[8]  Emanuela Gussoni,et al.  Stem cell therapy for muscular dystrophy , 2004, Expert opinion on biological therapy.

[9]  M. Pesce,et al.  Differentiation of Human Umbilical Cord Blood – Derived Stem Cells in Ischemic Limb Tissues , 2003 .

[10]  Lin Yi,et al.  Contribution of hematopoietic stem cells to skeletal muscle , 2003, Nature Medicine.

[11]  S. Watt,et al.  Stem cell plasticity , 2003, British journal of haematology.

[12]  M. Engelse,et al.  Gene expression profiling of resting and activated vascular smooth muscle cells by serial analysis of gene expression and clustering analysis. , 2003, Genomics.

[13]  M. Grompe,et al.  Cell fusion is the principal source of bone-marrow-derived hepatocytes , 2003, Nature.

[14]  K. Eguchi,et al.  Antiangiogenic gene therapy for hepatocellular carcinoma using angiostatin gene , 2003, Hepatology.

[15]  C. Cognard,et al.  Na+/Ca2+ exchange in human myotubes: intracellular calcium rises in response to external sodium depletion are enhanced in DMD , 2002, Neuromuscular Disorders.

[16]  L. Kunkel,et al.  Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. , 2002, The Journal of clinical investigation.

[17]  A. Emery Muscular dystrophy into the new millennium , 2002, Neuromuscular Disorders.

[18]  E. Scott,et al.  Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion , 2002, Nature.

[19]  F. Gage,et al.  Stem cells: Cell fusion causes confusion , 2002, Nature.

[20]  G. Cossu,et al.  Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: Implications for myocardium regeneration , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  F. Mavilio,et al.  Bone-marrow transplantation: Failure to correct murine muscular dystrophy , 2001, Nature.

[22]  P. Conget,et al.  Mesenchymal progenitor cells in human umbilical cord blood , 2000, British journal of haematology.

[23]  R. Mulligan,et al.  Dystrophin expression in the mdx mouse restored by stem cell transplantation , 1999, Nature.

[24]  G Cossu,et al.  Muscle regeneration by bone marrow-derived myogenic progenitors. , 1998, Science.

[25]  O. Halevy,et al.  HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. , 1998, Developmental biology.

[26]  L. Kunkel,et al.  Genomic screening for beta-sarcoglycan gene mutations: missense mutations may cause severe limb-girdle muscular dystrophy type 2E (LGMD 2E). , 1996, Human molecular genetics.

[27]  L. Kunkel,et al.  The sarcoglycan complex in the six autosomal recessive limb-girdle muscular dystrophies. , 1996, Human molecular genetics.

[28]  L. Kunkel,et al.  Mild and severe muscular dystrophy caused by a single gamma-sarcoglycan mutation. , 1996, American journal of human genetics.

[29]  K. Campbell,et al.  Merosin‐negative congenital muscular dystrophy associated with extensive brain abnormalities , 1995, Neurology.

[30]  R. Abresch,et al.  Profiles of neuromuscular diseases. Becker's muscular dystrophy. , 1995, American journal of physical medicine & rehabilitation.

[31]  Z. Yablonka-Reuveni,et al.  Separation of mouse crushed muscle extract into distinct mitogenic activities by heparin affinity chromatography , 1994, Journal of cellular physiology.

[32]  M. Passos-Bueno,et al.  Half the dystrophin gene is apparently enough for a mild clinical course: confirmation of its potential use for gene therapy. , 1994, Human molecular genetics.

[33]  E. Olson,et al.  Helix-loop-helix proteins as regulators of muscle-specific transcription. , 1993, The Journal of biological chemistry.

[34]  L. S. Quinn,et al.  Partial characterization of skeletal myoblast mitogens in mouse crushed muscle extract , 1992, Journal of cellular physiology.

[35]  J. Ervasti,et al.  Membrane organization of the dystrophin-glycoprotein complex , 1991, Cell.

[36]  Hideo Sugita,et al.  Immunostaining of skeletal and cardiac muscle surface membrane with antibody against Duchenne muscular dystrophy peptide , 1988, Nature.

[37]  R. Hodges,et al.  The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle , 1988, Nature.

[38]  M. Koenig,et al.  Complete cloning of the duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals , 1987, Cell.

[39]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[40]  B. Wang,et al.  Changing potency by spontaneous fusion , 2022 .