Maximum confidence quantum measurements.

We consider the problem of discriminating between states of a specified set with maximum confidence. For a set of linearly independent states unambiguous discrimination is possible if we allow for the possibility of an inconclusive result. For linearly dependent sets an analogous measurement is one which allows us to be as confident as possible that when a given state is identified on the basis of the measurement result, it is indeed the correct state.

[1]  C. Helstrom Quantum detection and estimation theory , 1969 .

[2]  A. Holevo Statistical decision theory for quantum systems , 1973 .

[3]  Robert S. Kennedy,et al.  Optimum testing of multiple hypotheses in quantum detection theory , 1975, IEEE Trans. Inf. Theory.

[4]  E. B. Davies,et al.  Information and quantum measurement , 1978, IEEE Trans. Inf. Theory.

[5]  I. D. Ivanović How to differentiate between non-orthogonal states , 1987 .

[6]  D. Dieks Overlap and distinguishability of quantum states , 1988 .

[7]  A. Peres How to differentiate between non-orthogonal states , 1988 .

[8]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[9]  A. Shimony,et al.  Optimal distinction between two non-orthogonal quantum states , 1995 .

[10]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[11]  Gisin,et al.  Unambiguous quantum measurement of nonorthogonal states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[12]  Masashi Ban,et al.  Optimum measurements for discrimination among symmetric quantum states and parameter estimation , 1997 .

[13]  Anthony Chefles,et al.  Unambiguous discrimination between linearly independent quantum states , 1998, quant-ph/9807022.

[14]  Daniel R. Terno,et al.  Optimal distinction between non-orthogonal quantum states , 1998, quant-ph/9804031.

[15]  S. Barnett,et al.  Accessible information and optimal strategies for real symmetrical quantum sources , 1998, quant-ph/9812062.

[16]  Anthony Chefles Quantum state discrimination , 2000 .

[17]  Fidelity and the communication of quantum information , 2001, quant-ph/0107024.

[18]  S. Barnett,et al.  Experimental demonstration of optimal unambiguous state discrimination , 2000, quant-ph/0007063.

[19]  S. Barnett,et al.  Experimental realization of optimal detection strategies for overcomplete states , 2000, quant-ph/0008028.

[20]  Tetsuya Kawanishi,et al.  18aTB-12 Optimum detection for extracting maximum information from symmetric qubit sets , 2001 .

[21]  Yonina C. Eldar,et al.  On quantum detection and the square-root measurement , 2001, IEEE Trans. Inf. Theory.

[22]  S. Barnett Minimum-error discrimination between multiply symmetric states , 2001 .

[23]  Stephen M. Barnett,et al.  Bound on measurement based on the no-signaling condition , 2002 .

[24]  Maximum fidelity for a mirror symmetric set of qubit states , 2003 .

[25]  Stephen M. Barnett Optical demonstrations of statistical decision theory for quantum systems , 2004, Quantum Inf. Comput..