In Vivo Ubiquitin Linkage-type Analysis Reveals that the Cdc48-Rad23/Dsk2 Axis Contributes to K48-Linked Chain Specificity of the Proteasome.

[1]  P. Güntert,et al.  The CUE Domain of Cue1 Aligns Growing Ubiquitin Chains with Ubc7 for Rapid Elongation. , 2016, Molecular cell.

[2]  M. Rapé,et al.  The increasing complexity of the ubiquitin code , 2016, Nature Cell Biology.

[3]  Y. Ye,et al.  Structure and function of the AAA+ ATPase p97/Cdc48p. , 2016, Gene.

[4]  Johannes Söding,et al.  The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis , 2016, Nucleic Acids Res..

[5]  Christoph H Emmerich,et al.  Optimising methods for the preservation, capture and identification of ubiquitin chains and ubiquitylated proteins by immunoblotting , 2015, Biochemical and biophysical research communications.

[6]  S. Wasserman,et al.  The Unfolded Protein Response Triggers Site-Specific Regulatory Ubiquitylation of 40S Ribosomal Proteins. , 2015, Molecular cell.

[7]  J Wade Harper,et al.  Quantifying ubiquitin signaling. , 2015, Molecular cell.

[8]  M. Kirschner,et al.  Substrate degradation by the proteasome: A single-molecule kinetic analysis , 2015, Science.

[9]  P. R. Elliott,et al.  Assembly and Specific Recognition of K29- and K33-Linked Polyubiquitin , 2015, Molecular cell.

[10]  D. Campbell,et al.  K29-Selective Ubiquitin Binding Domain Reveals Structural Basis of Specificity and Heterotypic Nature of K29 Polyubiquitin , 2015, Molecular cell.

[11]  Y. Saeki,et al.  A comprehensive method for detecting ubiquitinated substrates using TR-TUBE , 2015, Proceedings of the National Academy of Sciences.

[12]  K. Hanaoka,et al.  Gliotoxin suppresses NF-κB activation by selectively inhibiting linear ubiquitin chain assembly complex (LUBAC). , 2015, ACS chemical biology.

[13]  M. Glickman,et al.  DNA-damage-inducible 1 protein (Ddi1) contains an uncharacteristic ubiquitin-like domain that binds ubiquitin. , 2015, Structure.

[14]  M. Babu,et al.  Sequence composition of disordered regions fine-tunes protein half-life , 2015, Nature Structural &Molecular Biology.

[15]  J. Kanno,et al.  Ubiquitin acetylation inhibits polyubiquitin chain elongation , 2015, EMBO reports.

[16]  Francesco P. Marchese,et al.  Cdc48-independent proteasomal degradation coincides with a reduced need for ubiquitylation , 2015, Scientific Reports.

[17]  S. Jentsch,et al.  Autophagic Clearance of PolyQ Proteins Mediated by Ubiquitin-Atg8 Adaptors of the Conserved CUET Protein Family , 2014, Cell.

[18]  M. Rapé,et al.  Enhanced Protein Degradation by Branched Ubiquitin Chains , 2014, Cell.

[19]  A. Matouschek,et al.  Paradigms of protein degradation by the proteasome. , 2014, Current opinion in structural biology.

[20]  S. Gygi,et al.  Lysine 63-linked polyubiquitination is required for EGF receptor degradation , 2013, Proceedings of the National Academy of Sciences.

[21]  Hikaru Tsuchiya,et al.  The parallel reaction monitoring method contributes to a highly sensitive polyubiquitin chain quantification. , 2013, Biochemical and biophysical research communications.

[22]  Masato T. Kanemaki,et al.  The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication. , 2013, Molecular cell.

[23]  S. Gygi,et al.  Why do cellular proteins linked to K63‐polyubiquitin chains not associate with proteasomes? , 2013, The EMBO journal.

[24]  A. Bertolotti,et al.  Failure of Amino Acid Homeostasis Causes Cell Death following Proteasome Inhibition , 2012, Molecular cell.

[25]  A. Ciechanover,et al.  The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation. , 2012, Molecular cell.

[26]  P. Bastiaens,et al.  Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. , 2012, Molecular cell.

[27]  M. Rapé,et al.  The ubiquitin code. , 2012, Annual review of biochemistry.

[28]  Ivan Dikic,et al.  Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. , 2012, Annual review of biochemistry.

[29]  G. Raposo,et al.  A dual role for K63-linked ubiquitin chains in multivesicular body biogenesis and cargo sorting , 2012, Molecular biology of the cell.

[30]  M. Bug,et al.  Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system , 2012, Nature Cell Biology.

[31]  K. Haglund,et al.  The role of ubiquitylation in receptor endocytosis and endosomal sorting , 2012, Journal of Cell Science.

[32]  S. Gygi,et al.  APC/C-mediated multiple monoubiquitination provides an alternative degradation signal for cyclin B1 , 2012, Nature Cell Biology.

[33]  P. Lehner,et al.  Endosomal transport via ubiquitination. , 2011, Trends in cell biology.

[34]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[35]  T. Shaler,et al.  Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools , 2011, Nature Methods.

[36]  Scott D Emr,et al.  The ESCRT pathway. , 2011, Developmental cell.

[37]  S. Gygi,et al.  A Perturbed Ubiquitin Landscape Distinguishes Between Ubiquitin in Trafficking and in Proteolysis* , 2011, Molecular & Cellular Proteomics.

[38]  R. Piper,et al.  A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination , 2011, The Journal of cell biology.

[39]  R. Deshaies,et al.  Cdc48/p97 mediates UV-dependent turnover of RNA Pol II. , 2011, Molecular cell.

[40]  R. Kelley,et al.  Improved Quantitative Mass Spectrometry Methods for Characterizing Complex Ubiquitin Signals , 2010, Molecular & Cellular Proteomics.

[41]  Koichi Kato,et al.  Crystal structure of cyclic Lys48-linked tetraubiquitin. , 2010, Biochemical and biophysical research communications.

[42]  B. André,et al.  The ubiquitin code of yeast permease trafficking. , 2010, Trends in cell biology.

[43]  J. Hurley,et al.  VHS domains of ESCRT‐0 cooperate in high‐avidity binding to polyubiquitinated cargo , 2010, The EMBO journal.

[44]  Yusuke Sato,et al.  Structural basis for specific recognition of Lys 63‐linked polyubiquitin chains by NZF domains of TAB2 and TAB3 , 2009, The EMBO journal.

[45]  V. Lang,et al.  Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin‐binding entities , 2009, EMBO reports.

[46]  Soichi Wakatsuki,et al.  Ubiquitin-binding domains — from structures to functions , 2009, Nature Reviews Molecular Cell Biology.

[47]  J. Bonifacino,et al.  Gga2 Mediates Sequential Ubiquitin-independent and Ubiquitin-dependent Steps in the Trafficking of ARN1 from the trans-Golgi Network to the Vacuole* , 2009, The Journal of Biological Chemistry.

[48]  D. Finley,et al.  Recognition and processing of ubiquitin-protein conjugates by the proteasome. , 2009, Annual review of biochemistry.

[49]  Keiji Tanaka,et al.  An Inhibitor of a Deubiquitinating Enzyme Regulates Ubiquitin Homeostasis , 2009, Cell.

[50]  John Rush,et al.  Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation , 2009, Cell.

[51]  A. Ciechanover,et al.  Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-kappaB precursor. , 2009, Molecular cell.

[52]  H. Yokosawa,et al.  Lysine 63‐linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome , 2009, The EMBO journal.

[53]  O. Nureki,et al.  Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains , 2008, Nature.

[54]  R. Deshaies,et al.  A conditional yeast E1 mutant blocks the ubiquitin-proteasome pathway and reveals a role for ubiquitin conjugates in targeting Rad23 to the proteasome. , 2007, Molecular biology of the cell.

[55]  I. Sadowski,et al.  Disintegrator vectors for single‐copy yeast chromosomal integration , 2007, Yeast.

[56]  Keiji Tanaka,et al.  A ubiquitin ligase complex assembles linear polyubiquitin chains , 2006, The EMBO journal.

[57]  S. Gygi,et al.  Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology , 2006, Nature Cell Biology.

[58]  N. Shabek,et al.  Unique Role for the UbL-UbA Protein Ddi1 in Turnover of SCFUfo1 Complexes , 2006, Molecular and Cellular Biology.

[59]  Lan Huang,et al.  An Integrated Mass Spectrometry-based Proteomic Approach , 2006, Molecular & Cellular Proteomics.

[60]  S. Jentsch,et al.  Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. , 2006, Molecular cell.

[61]  D. Fushman,et al.  Diverse polyubiquitin interaction properties of ubiquitin-associated domains , 2005, Nature Structural &Molecular Biology.

[62]  S. Jentsch,et al.  A Series of Ubiquitin Binding Factors Connects CDC48/p97 to Substrate Multiubiquitylation and Proteasomal Targeting , 2005, Cell.

[63]  R. Deshaies,et al.  Multiubiquitin Chain Receptors Define a Layer of Substrate Selectivity in the Ubiquitin-Proteasome System , 2004, Cell.

[64]  D. Finley,et al.  Rad23 and Rpn10 Serve as Alternative Ubiquitin Receptors for the Proteasome* , 2004, Journal of Biological Chemistry.

[65]  J. S. Sodhi,et al.  Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. , 2004, Journal of molecular biology.

[66]  A. D. Robertson,et al.  GGA proteins bind ubiquitin to facilitate sorting at the trans-Golgi network , 2004, Nature Cell Biology.

[67]  Steven P Gygi,et al.  A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Akihiko Nakano,et al.  Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane , 2003, The Journal of cell biology.

[69]  C. Pickart,et al.  Rad23 Ubiquitin-associated Domains (UBA) Inhibit 26 S Proteasome-catalyzed Proteolysis by Sequestering Lysine 48-linked Polyubiquitin Chains* , 2003, The Journal of Biological Chemistry.

[70]  R. Hartmann-Petersen,et al.  Ubiquitin binding proteins protect ubiquitin conjugates from disassembly , 2003, FEBS letters.

[71]  G. Warren,et al.  Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1–Npl4 , 2002, The EMBO journal.

[72]  Seth Sadis,et al.  Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[73]  M. Funakoshi,et al.  Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[74]  P. Silver,et al.  The conserved npl4 protein complex mediates proteasome-dependent membrane-bound transcription factor activation. , 2001, Molecular biology of the cell.

[75]  V. Kushnirov Rapid and reliable protein extraction from yeast , 2000, Yeast.

[76]  S. Jentsch,et al.  A Novel Ubiquitination Factor, E4, Is Involved in Multiubiquitin Chain Assembly , 1999, Cell.

[77]  S. Emr,et al.  Fab1p PtdIns(3)P 5-Kinase Function Essential for Protein Sorting in the Multivesicular Body , 1998, Cell.

[78]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[79]  R. Schekman,et al.  Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes , 1995, Cell.

[80]  I. Ota,et al.  A Proteolytic Pathway That Recognizes Ubiquitin as a Degradation Signal (*) , 1995, The Journal of Biological Chemistry.

[81]  C. Behl,et al.  Ubiquitin-Dependent And Independent Signals In Selective Autophagy. , 2016, Trends in cell biology.

[82]  Alexander Varshavsky,et al.  The ubiquitin system. , 1998, Annual review of biochemistry.