Establishing criteria for higher‐level classification using molecular data: the systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae)

Most taxonomists agree on the need to adapt current classifications to recognize monophyletic units. However, delineations between higher taxonomic units can be based on the relative ages of different lineages and/or the level of morphological differentiation. In this paper, we address these issues in considering the species‐rich Polyommatus section, a group of butterflies whose taxonomy has been highly controversial. We propose a taxonomy‐friendly, flexible temporal scheme for higher‐level classification. Using molecular data from nine markers (6666 bp) for 104 representatives of the Polyommatus section, representing all but two of the 81 described genera/subgenera and five outgroups, we obtained a complete and well resolved phylogeny for this clade. We use this to revise the systematics of the Polyommatus blues, and to define criteria that best accommodate the described genera within a phylogenetic framework. First, we normalize the concept of section (Polyommatus) and propose the use of subtribe (Polyommatina) instead. To preserve taxonomic stability and traditionally recognized taxa, we designate an age interval (4–5 Myr) instead of a fixed minimum age to define genera. The application of these criteria results in the retention of 31 genera of the 81 formally described generic names, and necessitates the description of one new genus (Rueckbeilia gen. nov.). We note that while classifications should be based on phylogenetic data, applying a rigid universal scheme is rarely feasible. Ideally, taxon age limits should be applied according to the particularities and pre‐existing taxonomy of each group. We demonstrate that the concept of a morphological gap may be misleading at the genus level and can produce polyphyletic genera, and we propose that recognition of the existence of cryptic genera may be useful in taxonomy.

[1]  W. Edwards,et al.  THE BUTTERFLIES OF NORTH AMERICA. , 2015, Science.

[2]  W. Forster Beitrag zur Systematik des Tribus Lycaenini : unter besonderer Berücksichtigung der argyrognomon-und der argus-Gruppe , 1936 .

[3]  C. Hartman How Odynerus Suspends Her Egg , 1944 .

[4]  V. Nabokov Notes on the Morphology of the Genus Lycides (Lycnid, Lepidoptera) , 1944 .

[5]  V. Nabokov Zum Verhältnis von Psychoanalyse und Ökonomie , 1945 .

[6]  W. Hennig Grundzüge einer Theorie der phylogenetischen Systematik , 1950 .

[7]  C. Waddington,et al.  “Animal Cytology and Evolution” , 1955, Nature.

[8]  H. Stempffer The genera of the African Lycaenidae (Lepidoptera : Rhopalocera) , 1967 .

[9]  P. Ashlock Monophyly and Associated Terms , 1971 .

[10]  G. Griffiths Some Fundamental Problems in Biological Classification , 1973 .

[11]  J. Eliot The higher classification of the Lycaenidae (Lepidoptera): a tentative arrangement , 1973 .

[12]  L. G. Higgins,et al.  The classification of European butterflies , 1975 .

[13]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[14]  R. Britten,et al.  Rates of DNA sequence evolution differ between taxonomic groups. , 1986, Science.

[15]  C. A. Bridges Catalogue of family-group and genus-group names (Lepidoptera : Rhopalocera) / Charles A. Bridges. , 1988 .

[16]  E. Balletto,et al.  Taxonomy, evolutionary biology and biogeography of South West European Polyommatus coridon (Lepidoptera: Lycaenidae) , 1988 .

[17]  G. Ballmer,et al.  A survey of the last instar larvae of the Lycaenidae (Lepidoptera) of California , 1988, The Journal of Research on the Lepidoptera.

[18]  A. Kluge A Concern for Evidence and a Phylogenetic Hypothesis of Relationships among Epicrates (Boidae, Serpentes) , 1989 .

[19]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[20]  R. Mattoni,et al.  On the functional foreleg tarsus in Caerulea males (Lepidoptera: Lycaenidae: Polyommatini) , 1991 .

[21]  T. Hirowatari A generic classification of the tribe Polyommatini of the oriental and Australian regions (Lepidoptera, Lycaenidae, Polyommatinae) , 1992 .

[22]  Andrew P. Martin,et al.  Body size, metabolic rate, generation time, and the molecular clock. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Van Zandt Brower Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences (Lepidoptera: Nymphalidae). , 1994, Molecular phylogenetics and evolution.

[24]  B. Crespi,et al.  Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers , 1994 .

[25]  R. Vrijenhoek,et al.  DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. , 1994, Molecular marine biology and biotechnology.

[26]  K. Schwenk Comparative biology and the importance of cladistic classification: a case study from the sensory biology of squamate reptiles , 1994 .

[27]  R. Poole,et al.  A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1 alpha recovers morphology-based tree for heliothine moths. , 1995, Molecular biology and evolution.

[28]  R. DeSalle,et al.  GENE TREES, SPECIES TREES, AND SYSTEMATICS: A Cladistic Perspective , 1996 .

[29]  V. Tuzov Guide to the butterflies of Rissia and adjacent territories (lepidoptera, rhopalocera) , 1997 .

[30]  R. DeSalle,et al.  Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: the utility of wingless as a source of characters for phylogenetic inference , 1998, Insect molecular biology.

[31]  G. Edgecombe,et al.  Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution , 1998 .

[32]  C. Io Classification and identification of Chinese butterflies. , 1998 .

[33]  Michael J. Parsons The Butterflies of Papua New Guinea: Their Systematics and Biology , 1998 .

[34]  G. C. Johns,et al.  Proposal for a standardized temporal scheme of biological classification for extant species. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[35]  H. V. Oorschot,et al.  Zu Tomares in der Tuerkei, Ergaenzungen und Korrekturen zu Hesselbarth, van Oorschot & Wagener, 1995: Die Tagfalter der Tuerkei. 3 (Lepidoptera) , 2000 .

[36]  Brian D. Farrell,et al.  Evolutionary assembly of the conifer fauna: distinguishing ancient from recent associations in bark beetles , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  H. Rusterholz,et al.  Can nectar properties explain sex‐specific flower preferences in the Adonis Blue butterfly Lysandra bellargus? , 2000 .

[38]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[39]  D. Lees Butterflies of Australia. Their Identification, Biology and Distribution , 2001 .

[40]  J. Castresana,et al.  Cytochrome b phylogeny and the taxonomy of great apes and mammals. , 2001, Molecular biology and evolution.

[41]  N. Pierce,et al.  Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-1alpha gene sequences. , 2001, Molecular phylogenetics and evolution.

[42]  David J. Lohman,et al.  The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). , 2002, Annual review of entomology.

[43]  W. Hennig Phylogenetic Systematics , 2002 .

[44]  R. Brummitt Further dogged defense of paraphyletic taxa , 2003 .

[45]  T. Schmitt,et al.  Did Polyommatus icarus (Lepidoptera: Lycaenidae) have distinct glacial refugia in southern Europe? Evidence from population genetics , 2003 .

[46]  L. Biró,et al.  Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  G. Nelson,et al.  Brummitt on paraphyly: a response , 2003 .

[48]  U. Bonn Chromosome differentiation and the radiation of the butterfly subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus ) , 2003 .

[49]  A. Heuer,et al.  過冷却Lennard‐Jones流体におけるホッピング:準ベイスン,待ち時間分布および拡散 , 2003 .

[50]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[51]  T. Tscharntke,et al.  Effects of habitat fragmentation on the genetic structure of the monophagous butterfly Polyommatus coridon along its northern range margin , 2004, Molecular ecology.

[52]  J. Moulton,et al.  Evolution and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged Eremoneuran Diptera (Insecta). , 2004, Molecular phylogenetics and evolution.

[53]  H. Godfray,et al.  Introduction. Taxonomy for the twenty-first century. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[54]  C. Groves The What, Why and How of Primate Taxonomy , 2004, International Journal of Primatology.

[55]  N. Pierce,et al.  Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1-alpha: karyotype diversification and species radiation. , 2004, Systematic biology.

[56]  Roger Vila,et al.  The evolution of alternative parasitic life histories in large blue butterflies , 2004, Nature.

[57]  V. Lukhtanov,et al.  Principles of the Highly Ordered Arrangement of Metaphase I Bivalents in Spermatocytes of Agrodiaetus (Insecta, Lepidoptera) , 2004, Chromosome Research.

[58]  R. ffrench-Constant,et al.  The history and geography of diversification within the butterfly genus Lycaeides in North America , 2005, Molecular ecology.

[59]  J. Plotkin,et al.  Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies , 2005, Nature.

[60]  M. Wiemers,et al.  Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae) , 2007, Frontiers in Zoology.

[61]  Tobias Müller,et al.  4SALE – A tool for synchronous RNA sequence and secondary structure alignment and editing , 2006, BMC Bioinformatics.

[62]  Systematic placement of Lycaena cogina schaus (Lepidoptera: Lycaenidae: Polyommatinae), a biogeographically disjunct new world species , 2006 .

[63]  A. Shapiro,et al.  Homoploid Hybrid Speciation in an Extreme Habitat , 2006, Science.

[64]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[65]  T. Schmitt Molecular biogeography of Europe: Pleistocene cycles and postglacial trends , 2007, Frontiers in Zoology.

[66]  Derrick J. Zwickl Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion , 2006 .

[67]  T. Brereton,et al.  The changing status of the Chalkhill Blue butterfly Polyommatus coridon in the UK: the impacts of conservation policies and environmental factors , 2008, Journal of Insect Conservation.

[68]  N. Pierce,et al.  KARYOTYPIC DIVERSITY AND SPECIATION IN AGRODIAETUS BUTTERFLIES , 2007, Evolution; international journal of organic evolution.

[69]  J. Avise,et al.  Time to standardize taxonomies. , 2007, Systematic biology.

[70]  Gerard Talavera,et al.  Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. , 2007, Systematic biology.

[71]  I. A. Milyutina,et al.  Phylogeny of the genus Lophozia (Dumort.) Dumort. s. str. inferred from nuclear and chloroplast sequences ITS1-2 and TRNL-F , 2007, Russian Journal of Genetics.

[72]  S. O’Brien,et al.  The adaptive evolution of the mammalian mitochondrial genome , 2008, BMC Genomics.

[73]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[74]  F. Spina,et al.  A molecular phylogeny of the Sylvia cantillans complex: cryptic species within the Mediterranean basin. , 2008, Molecular phylogenetics and evolution.

[75]  A. Lucky,et al.  New species of Lordomyrma (Hymenoptera: Formicidae) from Southeast Asia and Fiji , 2008 .

[76]  J. Fordyce,et al.  Recent colonization and radiation of North American Lycaeides (Plebejus) inferred from mtDNA. , 2008, Molecular phylogenetics and evolution.

[77]  D. Posada jModelTest: phylogenetic model averaging. , 2008, Molecular biology and evolution.

[78]  M. Kéry,et al.  Positive effects of cyanogenic glycosides in food plants on larval development of the common blue butterfly , 2008, Oecologia.

[79]  M. Envall On the difference between mono-, holo-, and paraphyletic groups: a consistent distinction of process and pattern , 2008 .

[80]  A. Kelber,et al.  The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green , 2008, Journal of Experimental Biology.

[81]  Michael L. Reno,et al.  Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muroidea: Murinae). , 2008, Molecular phylogenetics and evolution.

[82]  C. Moreau,et al.  Exploring phenotypic plasticity and biogeography in emerald moths: A phylogeny of the genus Nemoria (Lepidoptera: Geometridae). , 2008, Molecular phylogenetics and evolution.

[83]  N. Schtickzelle,et al.  Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation , 2008, BMC Biology.

[84]  Thomas Dandekar,et al.  Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE , 2008, BMC Research Notes.

[85]  Thomas Dandekar,et al.  5.8S-28S rRNA interaction and HMM-based ITS2 annotation. , 2009, Gene.

[86]  T. Brereton,et al.  Climate change and translocations: The potential to re-establish two regionally-extinct butterfly species in Britain , 2009 .

[87]  P. Hebert,et al.  DNA barcoding Central Asian butterflies: increasing geographical dimension does not significantly reduce the success of species identification , 2009, Molecular ecology resources.

[88]  J. Settele,et al.  Ecology of butterflies in Europe , 2009 .

[89]  atthew,et al.  ANT TENDING OF MIAMI BLUE BUTTERFLY LARVAE ( LEPIDOPTERA : LYCAENIDAE ) : PARTNER DIVERSITY AND EFFECTS ON LARVAL PERFORMANCE , 2009 .

[90]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[91]  J. Schultz,et al.  ITS2 sequence-structure analysis in phylogenetics: a how-to manual for molecular systematics. , 2009, Molecular phylogenetics and evolution.

[92]  G. T. Bethune-Baker Comparative notes on Chilades galba, Led., and phiala, Gr. Gr , 2009 .

[93]  M. Wolf,et al.  ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus ) , 2009, BMC Evolutionary Biology.

[94]  N. Abramson,et al.  Supraspecies relationships in the subfamily Arvicolinae (Rodentia, Cricetidae): An unexpected result of nuclear gene analysis , 2009, Molecular Biology.

[95]  V. Lukhtanov,et al.  Geographical distribution of the cryptic species Agrodiaetus alcestis alcestis, A. alcestis karacetinae and A. demavendi (Lepidoptera: Lycaenidae) revealed by cytogenetic analysis , 2010 .

[96]  B. Stradomsky,et al.  A molecular phylogeny of Polyommatus s. str. and Plebicula based on mitochondrial COI and nuclear ITS2 sequences (Lepidoptera: Lycaenidae) , 2010 .

[97]  Alexander Keller,et al.  The ITS2 Database III—sequences and structures for phylogeny , 2009, Nucleic Acids Res..

[98]  R. Vilà,et al.  How common are dot-like distributions? Taxonomical oversplitting in western European Agrodiaetus (Lepidoptera: Lycaenidae) revealed by chromosomal and molecular markers. , 2010 .

[99]  Ziheng Yang,et al.  The Timetree of Life , 2010 .

[100]  Jeet Sukumaran,et al.  DendroPy: a Python library for phylogenetic computing , 2010, Bioinform..

[101]  R. Kitching,et al.  Butterflies of Australia , 2010 .

[102]  T. Stuessy,et al.  Paraphyletic groups as natural units of biological classification , 2010 .

[103]  P. Cranston,et al.  When molecules and morphology concur: the ‘Gondwanan’ midges (Diptera: Chironomidae) , 2010 .

[104]  T. Schmitt,et al.  Genotype Shifts Along One Generation of the Blue Butterfly Polyommatus coridon without Changes in Allele Frequencies , 2010 .

[105]  J. Avise,et al.  On the temporal inconsistencies of Linnean taxonomic ranks , 2011 .

[106]  Kurt E. Johnson,et al.  Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World , 2011, Proceedings of the Royal Society B: Biological Sciences.

[107]  A. Stekolnikov Evolution of the skeleton and musculature of the male genitalia in the family lycaenidae (Lepidoptera): II. Infratribe Polyommatina Swainson, 1827 , 2011, Entomological Review.

[108]  V. Lukhtanov Dobzhansky’s rule and reinforcement of prezygotic reproductive isolation in zones of secondary contact , 2011, Biology Bulletin Reviews.

[109]  A. Schmidt‐Lebuhn,et al.  Fallacies and false premises—a critical assessment of the arguments for the recognition of paraphyletic taxa in botany , 2012, Cladistics : the international journal of the Willi Hennig Society.

[110]  H. Descimon,et al.  Bad species , 2022 .