Nondifferentiable Multiplier Rules for Optimization and Bilevel Optimization Problems

In this paper we study optimization problems with equality and inequality constraints on a Banach space where the objective function and the binding constraints are either differentiable at the optimal solution or Lipschitz near the optimal solution. Necessary and sufficient optimality conditions and constraint qualifications in terms of the Michel--Penot subdifferential are given, and the results are applied to bilevel optimization problems.

[1]  E. M. L. Beale,et al.  Nonlinear Programming: A Unified Approach. , 1970 .

[2]  Philippe Michel,et al.  A generalized derivative for calm and stable functions , 1992, Differential and Integral Equations.

[3]  Liqun Qi,et al.  Semiregularity and Generalized Subdifferentials with Applications to Optimization , 1993, Math. Oper. Res..

[4]  J. Abadie ON THE KUHN-TUCKER THEOREM. , 1966 .

[5]  S. Dempe,et al.  Optimality conditions for bilevel programming problems , 2006 .

[6]  Jane J. Ye,et al.  Equivalence among various derivatives and subdifferentials of the distance function , 2003 .

[7]  Jane J. Ye,et al.  Multiplier Rules Under Mixed Assumptions of Differentiability and Lipschitz Continuity , 2000, SIAM J. Control. Optim..

[8]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[9]  J. Treiman,et al.  Lagrange Multipliers for Nonconvex Generalized Gradients with Equality, Inequality, and Set Constraints , 1999 .

[10]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[11]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[12]  J. Penot Are Generalized Derivatives Sseful for Generalized Convex Functions , 1998 .

[13]  A. Fiacco,et al.  Convexity and concavity properties of the optimal value function in parametric nonlinear programming , 1983 .

[14]  A. D. Ioffe,et al.  Necessary Conditions in Nonsmooth Optimization , 1984, Math. Oper. Res..

[15]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[16]  Marc Teboulle,et al.  A comparison of constraint quali cations in in nite-dimensional convex programming , 1990 .

[17]  A. Jourani Constraint qualifications and Lagrange multipliers in nondifferentiable programming problems , 1994 .

[18]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[19]  Jane J. Ye,et al.  A note on optimality conditions for bilevel programming problems , 1997 .

[20]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[21]  J. Jahn Introduction to the Theory of Nonlinear Optimization , 1994 .

[22]  Alexander D. Ioffe A Lagrange multiplier rule with small convex-valued subdifferentials for nonsmooth problems of mathematical programming involving equality and nonfunctional constraints , 1993, Math. Program..

[23]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[24]  Jane J. Ye,et al.  Exact Penalization and Necessary Optimality Conditions for Generalized Bilevel Programming Problems , 1997, SIAM J. Optim..

[25]  Jay S. Treiman Shrinking generalized gradients , 1988 .

[26]  Some results on integration of subdifferentials , 2000 .

[27]  Jonathan M. Borwein,et al.  Necessary conditions for constrained optimization problems with semicontinuous and continuous data , 1998 .

[28]  Huynh van Ngai,et al.  A Fuzzy Necessary Optimality Condition for Non-Lipschitz Optimization in Asplund Spaces , 2002, SIAM J. Optim..

[29]  Hubert Halkin,et al.  Implicit Functions and Optimization Problems without Continuous Differentiability of the Data , 1974 .

[30]  J. Aubin Set-valued analysis , 1990 .

[31]  C. Zălinescu,et al.  A comparison of constraint qualifications in infinite-dimensional convex programming revisited , 1999, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.