A two-dimensional isogeometric boundary element method for linear elastic fracture

The present work proposes a method for simulating linear elastic fracture and crack growth through an isogeometric boundary element method [1][2]. Non-Uniform Rational B-Splines (NURBS) are used to approximate the geometry, boundary displacements and boundary tractions. Collocation is employed to generate the system of equations. To avoid the degeneration seen when modelling coincident crack surfaces with conventional boundary element methods, a dual boundary element method formulation is applied [3]. An algorithm for the placement of collocation points is detailed with the treatment of all singular integrals outlined. Stress intensity factors are compared against closed-form solutions to verify implementation and a comparison of crack growth propagation paths is made with the extended finite element method. REFERENCES [1] R. N. Simpson, S. P. A. Bordas, J. Trevelyan and T. Rabczuk. A two-dimensional isogeometric boundary element method for elastostatic analysis. Comp. Meth. in App. Mech. and Engng., Vol. 209-212(0), 87-100, 2012. [2] M. A. Scott, R. N. Simpson, J. A. Evans, S. Lipton, S. P. A. Bordas, T. J. R. Hughes and T. W. Sederberg. Isogeometric boundary element analysis using unstructured T-splines. Comp. Meth. in App. Mech. and Engng., Vol. 254(0), 197-221, 2013. [3] A. Potela, M. H. Aliabadi and D. P. Rooke. The dual boundary element method: Effective implementation for crack problems. Int. J. Numer. Meth. Engng., Vol. 33(6), 1269-1287, 1992.

[1]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[2]  T. Cruse,et al.  Boundary-integral equation analysis of cracked anisotropic plates , 1975 .

[3]  R. D. Henshell,et al.  CRACK TIP FINITE ELEMENTS ARE UNNECESSARY , 1975 .

[4]  S. L. Crouch Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution , 1976 .

[5]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[6]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[7]  Anthony R. Ingraffea,et al.  Two‐dimensional stress intensity factor computations using the boundary element method , 1981 .

[8]  J. Domínguez,et al.  On the use of quarter‐point boundary elements for stress intensity factor computations , 1984 .

[9]  D. Arnold,et al.  On the Asymptotic Convergence of Spline Collocation Methods for Partial Differential Equations , 1984 .

[10]  J. Eischen An improved method for computing the J2 integral , 1987 .

[11]  J. Telles A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals , 1987 .

[12]  H. Hong,et al.  Derivations of Integral Equations of Elasticity , 1988 .

[13]  Mircea Grigoriu,et al.  Probabilistic Fracture Mechanics: A Validation of Predictive Capability , 1990 .

[14]  Yijun Liu,et al.  Some identities for fundamental solutions and their applications to weakly-singular boundary element formulations , 1991 .

[15]  T. Rudolphi The use of simple solutions in the regularization of hypersingular boundary integral equations , 1991 .

[16]  F. Rizzo,et al.  A General Algorithm for the Numerical Solution of Hypersingular Boundary Integral Equations , 1992 .

[17]  D. Rooke,et al.  Dual boundary element analysis of cracked plates: singularity subtraction technique , 1992 .

[18]  D. Rooke,et al.  The dual boundary element method: Effective implementation for crack problems , 1992 .

[19]  K. Shivakumar,et al.  An equivalent domain integral method for three-dimensional mixed-mode fracture problems , 1992 .

[20]  M. Aliabadi,et al.  Dual boundary element method for three-dimensional fracture mechanics analysis , 1992 .

[21]  L. Gray,et al.  Use of ‘simple solutions’ for boundary integral methods in elasticity and fracture analysis , 1992 .

[22]  Weiwei Sun,et al.  A direct method for calculating the stress intensity factor in BEM , 1993 .

[23]  M. Aliabadi,et al.  Discontinuous crack-tip elements: Application to 3D boundary element method , 1994 .

[24]  J. Sládek,et al.  Regularization Techniques Applied to Boundary Element Methods , 1994 .

[25]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[26]  F. Rizzo,et al.  HYPERSINGULAR INTEGRALS: HOW SMOOTH MUST THE DENSITY BE? , 1996 .

[27]  J. Melenk The Partition of Unity MethodI , 1996 .

[28]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[29]  P. Juhl A NOTE ON THE CONVERGENCE OF THE DIRECT COLLOCATION BOUNDARY ELEMENT METHOD , 1998 .

[30]  G. Maier,et al.  Symmetric Galerkin Boundary Element Methods , 1998 .

[31]  S. Li,et al.  Symmetric weak-form integral equation method for three-dimensional fracture analysis , 1998 .

[32]  M. Aliabadi,et al.  Decomposition of the mixed-mode J-integral—revisited , 1998 .

[33]  S. Mukherjee,et al.  Thermoelastic fracture mechanics with regularized hypersingular boundary integral equations , 1999 .

[34]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[35]  G. Kuhn,et al.  Comparison of the basic and the discontinuity formulation of the 3D-dual boundary element method , 2000 .

[36]  J. Domínguez,et al.  A direct traction BIE approach for three-dimensional crack problems , 2000 .

[37]  M. Pavier,et al.  The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading , 2001 .

[38]  Bhushan Lal Karihaloo,et al.  Accurate determination of the coefficients of elastic crack tip asymptotic field , 2001 .

[39]  Satya N. Atluri,et al.  SGBEM-FEM Alternating Method for Analyzing 3D Non-planar Cracks and Their Growth in Structural Components , 2001 .

[40]  A. Frangi Fracture propagation in 3D by the symmetric Galerkin boundary element method , 2002 .

[41]  Ted Belytschko,et al.  A vector level set method and new discontinuity approximations for crack growth by EFG , 2002 .

[42]  B. Moran,et al.  An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions , 2002 .

[43]  M. Aliabadi,et al.  Dual boundary element assessment of three-dimensional fatigue crack growth , 2004 .

[44]  Alok Sutradhar,et al.  Symmetric Galerkin boundary element computation of T-stress and stress intensity factors for mixed-mode cracks by the interaction integral method , 2004 .

[45]  Marc Daniel,et al.  Local Deformation of NURBS Curves , 2005 .

[46]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[47]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[48]  K. Liew,et al.  Analyzing the 2D fracture problems via the enriched boundary element-free method , 2007 .

[49]  Moussa Nait-Abdelaziz,et al.  A coupled FEM/BEM approach and its accuracy for solving crack problems in fracture mechanics , 2007 .

[50]  J. Chang,et al.  Stress intensity factor computation along a non-planar curved crack in three dimensions , 2007 .

[51]  T. Rabczuk,et al.  Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment , 2008 .

[52]  Panagiotis D. Kaklis,et al.  An isogeometric BEM for exterior potential-flow problems in the plane , 2009, Symposium on Solid and Physical Modeling.

[53]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[54]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[55]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[56]  Kang Li,et al.  Isogeometric analysis and shape optimization via boundary integral , 2011, Comput. Aided Des..

[57]  Thomas J. R. Hughes,et al.  An isogeometric approach to cohesive zone modeling , 2011 .

[58]  R. Simpson,et al.  A partition of unity enriched dual boundary element method for accurate computations in fracture mechanics , 2011 .

[59]  A. Portela Dual boundary‐element method: Simple error estimator and adaptivity , 2011 .

[60]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[61]  Guangyao Li,et al.  Isogeometric analysis in BIE for 3-D potential problem , 2012 .

[62]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[63]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[64]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[65]  S. Atluri,et al.  Fracture & Fatigue Analyses: SGBEM-FEM or XFEM?Part 2: 3D Solids , 2013 .

[66]  I. Harari,et al.  A direct analytical method to extract mixed‐mode components of strain energy release rates from Irwin's integral using extended finite element method , 2013 .

[67]  J. Trevelyan,et al.  Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems , 2013 .

[68]  A. Paluszny,et al.  Numerical fracture growth modeling using smooth surface geometric deformation , 2013 .

[69]  M. Scott,et al.  Acoustic isogeometric boundary element analysis , 2014 .

[70]  L. Heltai,et al.  Nonsingular isogeometric boundary element method for Stokes flows in 3D , 2014 .

[71]  S. K. Maiti,et al.  Modified crack closure integral technique for extraction of SIFs in meshfree methods , 2014 .