Numerical investigation on global dynamics for nonlinear stochastic heat conduction via global random attractors theory

Abstract In term of the global random attractors theory, global dynamics of nonlinear stochastic heat conduction driven by multiplicative white noise with a variable coefficient are investigated numerically. It is shown that global 𝒟-bifurcation, secondary global 𝒟-bifurcation and complex dynamical behavior occur in motion of the system with increasing the intensity of linear component in the heat source. Furthermore, the results obtained here indicate that Hasudorff dimension which is relevant to global Lyapunov exponent can be used to describe global dynamics of the associated system qualitatively.

[1]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[2]  Bixiang Wang Random attractors for non-autonomous stochasticwave equations with multiplicative noise , 2013 .

[3]  Björn Schmalfuß,et al.  The random attractor of the stochastic Lorenz system , 1997 .

[4]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[5]  V. V. Chepyzhov,et al.  Dimension estimates for attractors and for kernel sections of non-autonomous evolution equations , 1993 .

[6]  Arnaud Debussche,et al.  Hausdorff dimension of a random invariant set , 1998 .

[7]  P. Protter Stochastic integration and differential equations , 1990 .

[8]  Hans Crauel,et al.  Hausdorff Dimension of Invariant Sets for Random Dynamical Systems , 1998 .

[9]  I. Chueshov Gevrey regularity of random attractors for stochastic reaction-diffusion equations , 2000 .

[10]  H. Crauel,et al.  Attractors for random dynamical systems , 1994 .

[11]  Arnaud Debussche,et al.  On the finite dimensionality of random attractors 1 , 1997 .

[12]  T. Caraballo,et al.  The dimension of attractors of nonautonomous partial differential equations , 2003, The ANZIAM Journal.

[13]  Xiaoming Fan,et al.  Attractors for the stochastic reaction–diffusion equation driven by linear multiplicative noise with a variable coefficient , 2013 .

[14]  Hans Crauel,et al.  Global random attractors are uniquely determined by attracting deterministic compact sets , 1999 .

[15]  Shengfan Zhou,et al.  Random Attractor for Damped Nonlinear Wave Equations with White Noise , 2005, SIAM J. Appl. Dyn. Syst..

[16]  Peter W. Bates,et al.  Random attractors for stochastic reaction–diffusion equations on unbounded domains , 2009 .

[17]  Gabriele Bleckert,et al.  The Stochastic Brusselator: Parametric Noise Destroys Hoft Bifurcation , 1999 .

[18]  Hans Crauel,et al.  Random attractors , 1997 .

[19]  Klaus Reiner Schenk-Hoppé,et al.  Random attractors--general properties, existence and applications to stochastic bifurcation theory , 1997 .

[20]  Xiaoming Fan,et al.  Attractors for a Damped Stochastic Wave Equation of Sine–Gordon Type with Sublinear Multiplicative Noise , 2006 .

[21]  Hans Crauel,et al.  Random Point Attractors Versus Random Set Attractors , 2001 .

[22]  Tomás Caraballo,et al.  A stochastic pitchfork bifurcation in a reaction-diffusion equation , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  R. Temam,et al.  Nonlinear Galerkin methods , 1989 .

[24]  L. Arnold Random Dynamical Systems , 2003 .

[25]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[26]  Hans Crauel,et al.  Additive Noise Destroys a Pitchfork Bifurcation , 1998 .

[27]  Tomás Caraballo,et al.  Stability and random attractors for a reaction-diffusion equation with multiplicative noise , 2000 .

[28]  Gunter Ochs,et al.  Numerical Approximation of Random Attractors , 1999 .

[29]  Bixiang Wang,et al.  Existence, Stability and Bifurcation of Random Complete and Periodic Solutions of Stochastic Parabolic Equations , 2013, 1304.4884.

[30]  Roger Temam,et al.  Some new generalizations of inertial manifolds , 1996 .