Phase recovery, MaxCut and complex semidefinite programming

Phase retrieval seeks to recover a signal $$x \in {\mathbb {C}}^p$$x∈Cp from the amplitude $$|A x|$$|Ax| of linear measurements $$Ax \in {\mathbb {C}}^n$$Ax∈Cn. We cast the phase retrieval problem as a non-convex quadratic program over a complex phase vector and formulate a tractable relaxation (called PhaseCut) similar to the classical MaxCut semidefinite program. We solve this problem using a provably convergent block coordinate descent algorithm whose structure is similar to that of the original greedy algorithm in Gerchberg and Saxton (Optik 35:237–246, 1972), where each iteration is a matrix vector product. Numerical results show the performance of this approach over three different phase retrieval problems, in comparison with greedy phase retrieval algorithms and matrix completion formulations.

[1]  E. J. Akutowicz On the determination of the phase of a Fourier integral. I , 1956 .

[2]  Tosio Kato Perturbation theory for linear operators , 1966 .

[3]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[4]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[5]  Jae S. Lim,et al.  Signal estimation from modified short-time Fourier transform , 1983, ICASSP.

[6]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[7]  J. Sanz Mathematical Considerations for the Problem of Fourier Transform Phase Retrieval from Magnitude , 1985 .

[8]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[9]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[10]  Robert W. Harrison,et al.  Phase problem in crystallography , 1993 .

[11]  Charles Delorme,et al.  Laplacian eigenvalues and the maximum cut problem , 1993, Math. Program..

[12]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[13]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[14]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[15]  R. Bhatia Matrix Analysis , 1996 .

[16]  Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization , 1998 .

[17]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[18]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[19]  Michael J. Todd,et al.  Sensitivity analysis in linear programming and semidefinite programming using interior-point methods , 2001, Math. Program..

[20]  David P. Williamson,et al.  Approximation algorithms for MAX-3-CUT and other problems via complex semidefinite programming , 2001, STOC '01.

[21]  Kees Roos,et al.  Extended Matrix Cube Theorems with Applications to µ-Theory in Control , 2003, Math. Oper. Res..

[22]  E. Alper Yildirim,et al.  An Interior-Point Perspective on Sensitivity Analysis in Semidefinite Programming , 2003, Math. Oper. Res..

[23]  Stephen P. Boyd,et al.  Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices , 2003, Proceedings of the 2003 American Control Conference, 2003..

[24]  Zhi-Quan Luo,et al.  An efficient quasi-maximum likelihood decoder for PSK signals , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[25]  Anthony Man-Cho So,et al.  On approximating complex quadratic optimization problems via semidefinite programming relaxations , 2005, IPCO.

[26]  Powen Ru,et al.  Multiresolution spectrotemporal analysis of complex sounds. , 2005, The Journal of the Acoustical Society of America.

[27]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[28]  Shuzhong Zhang,et al.  Complex Quadratic Optimization and Semidefinite Programming , 2006, SIAM J. Optim..

[29]  Yurii Nesterov,et al.  Smoothing Technique and its Applications in Semidefinite Optimization , 2004, Math. Program..

[30]  O. Bunk,et al.  Diffractive imaging for periodic samples: retrieving one-dimensional concentration profiles across microfluidic channels. , 2007, Acta crystallographica. Section A, Foundations of crystallography.

[31]  E. Candès,et al.  Exact low-rank matrix completion via convex optimization , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[32]  J. Miao,et al.  Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. , 2008, Annual review of physical chemistry.

[33]  Alexandre d'Aspremont,et al.  First-Order Methods for Sparse Covariance Selection , 2006, SIAM J. Matrix Anal. Appl..

[34]  Anthony Man-Cho So,et al.  Convex Optimization in Signal Processing and Communications: Probabilistic analysis of semidefinite relaxation detectors for multiple-input, multiple-output systems , 2009 .

[35]  Alexandre d'Aspremont,et al.  Approximating Eigenvectors by Subsampling , 2009 .

[36]  Noureddine El Karoui,et al.  Second order accurate distributed eigenvector computation for extremely large matrices , 2009, 0908.0137.

[37]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[38]  Convex Optimization in Signal Processing and Communications , 2010 .

[39]  Anthony Man-Cho So,et al.  Non – Asymptotic Performance Analysis of the Semidefinite Relaxation Detector in Digital Communications , 2010 .

[40]  Anthony Man-Cho So,et al.  Probabilistic analysis of the semidefinite relaxation detector in digital communications , 2010, SODA '10.

[41]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[42]  Zhi-Quan Luo,et al.  Probabilistic Analysis of Semidefinite Relaxation for Binary Quadratic Minimization , 2010, SIAM J. Optim..

[43]  Lei Tian,et al.  Compressive Phase Retrieval , 2011 .

[44]  Emmanuel J. Candès,et al.  Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..

[45]  G. Papanicolaou,et al.  Array imaging using intensity-only measurements , 2010 .

[46]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[47]  J. Gallier Quadratic Optimization Problems , 2020, Linear Algebra and Optimization with Applications to Machine Learning.

[48]  A. Singer Angular Synchronization by Eigenvectors and Semidefinite Programming. , 2009, Applied and computational harmonic analysis.

[49]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[50]  Yonina C. Eldar,et al.  Sparsity-based single-shot sub-wavelength coherent diffractive imaging , 2011, 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel.

[51]  Katya Scheinberg,et al.  Block Coordinate Descent Methods for Semidefinite Programming , 2012 .

[52]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[53]  L. Demanet,et al.  Stable Optimizationless Recovery from Phaseless Linear Measurements , 2012, Journal of Fourier Analysis and Applications.

[54]  Yonina C. Eldar,et al.  Sparsity-based single-shot subwavelength coherent diffractive imaging , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[55]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[56]  Jean-Philippe Vial,et al.  Robust Optimization , 2021, ICORES.

[57]  Xiaodong Li,et al.  Solving Quadratic Equations via PhaseLift When There Are About as Many Equations as Unknowns , 2012, Found. Comput. Math..

[58]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[59]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .