Implications of coppice stand characteristics on the rockfall protection function

Coppice forest stands can play a key protective role on active rockfall slopes in mountainous regions. This paper aims at quantifying their protection function and at explaining the role of different stand parameters in this function. To achieve these objectives we first made field inventories focussing on the dendrometric and spatial characteristics of 13 coppice stands. Then, we developed a 2D simulation model, called RockCop, to quantify their protective function against rockfall. The simulations show that the predominant size of the falling rocks conditions which of the dendrometric stand parameters mainly determine the protective function of a coppice stand. In the case of small rocks (20 cm O), we conclude that a higher stand density improves the protective function. Thus, for those rocks, young stands are most adequate. An acceptable level of protection against medium-sized rocks (50 cm O) is only fulfilled by few coppice stands and determined by specific combinations of stand density, stem diameters, basal area and species composition. None of the investigated stands offer sufficient protection against large rocks (1 m O).

[1]  H. Kienholz,et al.  ASSESSMENT OF GEOMORPHIC HAZARDS AND PRIORITIES FOR FOREST MANAGEMENT ON THE RIGI NORTH FACE, SWITZERLAND , 1994 .

[2]  Martin F. Price,et al.  Forests in sustainable mountain development : a state of knowledge report for 2000 , 2000 .

[3]  Bruno Salm,et al.  Avalanche formation, movement and effects , 1987 .

[4]  A. C. Seijmonsbergen,et al.  Comparison of three Gis-based models for predicting rockfall runout , 2003 .

[5]  Zhe Jiang,et al.  Spatial Statistics , 2013 .

[6]  Frédéric Berger,et al.  Principles of the tool Rockfor.net for quantifying the rockfall hazard below a protection forest , 2007 .

[7]  Ronald Toppe,et al.  Terrain models — A tool for natural hazard mapping , 2007 .

[8]  G. Meissl Modellierung der Reichweite von Felsstürzen : Fallbeispiele zur GIS-gestützten Gefahrenbeurteilung aus dem Bayerischen und Tiroler Alpenraum , 1998 .

[9]  R. Motta,et al.  Protective Forests and Silvicultural Stability , 2000 .

[10]  G. Mitscherlich Waldbau auf soziologisch-ökologischer Grundlage, Mayer Hannes. Verlag Gustav Fischer, Berlin, Heidelberg, New York (1980), Gzl. DM 98,-,Kart. DM 78,- , 1981 .

[11]  H. Mayer Waldbau : auf soziologisch-ökologischer Grundlage , 1977 .

[12]  M Woltjer,et al.  Coupling a 3D patch model and a rockfall module to assess rockfall protection in mountain forests. , 2008, Journal of environmental management.

[13]  Lynne Boddy,et al.  Fungal decomposition of wood. Its biology and ecology. , 1988 .

[14]  B. Ripley Modelling Spatial Patterns , 1977 .

[15]  A. Heim Bergsturz und Menschenleben , 1932 .

[16]  Forêt et protection contre les chutes de rochers , 1995 .

[17]  Frédéric Berger,et al.  Stem breakage of trees and energy dissipation during rockfall impacts. , 2006, Tree physiology.

[18]  M. Stoffel,et al.  Assessing the protective effect of mountain forests against rockfall using a 3D simulation model , 2006 .

[19]  F. Berger,et al.  Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes , 2006 .