Abundance of field galaxies

We present new measurements of the abundance of galaxies with a given circular velocity in the Local Volume: a region centered on the Milky Way Galaxy and extending to distance 10Mpc. The sample of 750 mostly dwarf galaxies provides a unique opportunity to study the abundance and properties of galaxies down to absolute magnitudes MB= -10, and virial masses Mvir= 1e9Msun. We find that the standard LCDM model gives remarkably accurate estimates for the velocity function of galaxies with circular velocities V>60kms and corresponding virial masses Mvir> 3e10Msun, but it badly fails by over-predicting 5 times the abundance of large dwarfs with velocities V= 30-50kms. The Warm Dark Matter models cannot explain the data either, regardless of mass of the WDM particle. Just as in previous observational studies, we find a shallow asymptotic slope dN/dlog V = V**alpha, alpha =-1 of the velocity function, which is inconsistent with the standard LCDM model that predicts the slope alpha =-3. Though reminiscent to the known overabundance of satellites problem, the overabundance of field galaxies is a much more difficult problem. For the LCDM model to survive, in the 10Mpc radius of the Milky Way there should be 1000 dark galaxies with virial mass Mvir= 1e10Msun, extremely low surface brightness and no detectable HI gas. So far none of this type of galaxies have been discovered.

[1]  F. Prada,et al.  MultiDark simulations: the story of dark matter halo concentrations and density profiles , 2014, 1411.4001.

[2]  Liverpool John Moores University,et al.  Local Group galaxies emerge from the dark , 2014, 1412.2748.

[3]  R. Giovanelli,et al.  Is there a "too big to fail" problem in the field? , 2014, 1407.4665.

[4]  P. Madau,et al.  DARK MATTER HEATING AND EARLY CORE FORMATION IN DWARF GALAXIES , 2014, 1405.2577.

[5]  E. Kirby,et al.  Too big to fail in the Local Group , 2014, 1404.5313.

[6]  A. Moiseev Ionized gas rotation curves in nearby dwarf galaxies , 2014, 1402.0100.

[7]  J. Bullock,et al.  The high-z universe confronts warm dark matter: Galaxy counts, reionization and the nature of dark matter , 2014, 1401.3769.

[8]  Caltech,et al.  The dynamics of isolated Local Group galaxies , 2014, 1401.1208.

[9]  S. Cole,et al.  Constraining the warm dark matter particle mass with Milky Way satellites , 2013, 1310.7739.

[10]  E. Polisensky,et al.  Massive Milky Way satellites in cold and warm dark matter: dependence on cosmology , 2013, 1310.0430.

[11]  C. Brook,et al.  The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores , 2013, 1306.0898.

[12]  S. White,et al.  Numerical resolution limits on subhalo abundance matching , 2013, 1303.3586.

[13]  S. More,et al.  Effects of baryon removal on the structure of dwarf spheroidal galaxies , 2012, 1212.6651.

[14]  F. Prada,et al.  Halo Abundance Matching: accuracy and conditions for numerical convergence , 2013, 1310.3740.

[15]  M. Viel,et al.  Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data , 2013, 1306.2314.

[16]  I. Karachentsev,et al.  UPDATED NEARBY GALAXY CATALOG , 2013, 1303.5328.

[17]  R. Smith,et al.  Halo mass function and the free streaming scale , 2013, 1303.0839.

[18]  Timothy A. Davis,et al.  The ATLAS3D project XV: benchmark for early-type galaxies scaling relations from 260 dynamical models: mass-to-light ratio, dark matter, fundamental plane and mass plane , 2012, 1208.3522.

[19]  R. Teyssier,et al.  Cusp-core transformations in dwarf galaxies: observational predictions , 2012, 1206.4895.

[20]  W. Percival,et al.  The clustering of galaxies at z ≈ 0.5 in the SDSS-III Data Release 9 BOSS-CMASS sample: a test for the ΛCDM cosmology , 2012, 1202.6057.

[21]  B. Willman,et al.  BARYONS MATTER: WHY LUMINOUS SATELLITE GALAXIES HAVE REDUCED CENTRAL MASSES , 2012, 1207.0007.

[22]  Emilio Falco,et al.  THE 2MASS REDSHIFT SURVEY—DESCRIPTION AND DATA RELEASE , 2011, 1108.0669.

[23]  R. Smith,et al.  Non-linear evolution of cosmological structures in warm dark matter models , 2011, 1112.0330.

[24]  J. Navarro,et al.  The dark matter halos of dwarf galaxies: a challenge for the LCDM paradigm? , 2011, 1111.6609.

[25]  Kristin Riebe,et al.  The MultiDark Database: Release of the Bolshoi and MultiDark Cosmological Simulations , 2011, ArXiv.

[26]  R. Giovanelli,et al.  THE VELOCITY WIDTH FUNCTION OF GALAXIES FROM THE 40% ALFALFA SURVEY: SHEDDING LIGHT ON THE COLD DARK MATTER OVERABUNDANCE PROBLEM , 2011, 1106.0710.

[27]  Cambridge,et al.  How supernova feedback turns dark matter cusps into cores , 2011, 1106.0499.

[28]  Joel R. Primack,et al.  Halo concentrations in the standard LCDM cosmology , 2011, 1104.5130.

[29]  Joel R. Primack,et al.  Galaxy Properties from the Ultra-violet to the Far-Infrared: Lambda-CDM models confront observations , 2011, 1104.0669.

[30]  M. Boylan-Kolchin,et al.  Too big to fail? The puzzling darkness of massive Milky Way subhaloes , 2011, 1103.0007.

[31]  S. More,et al.  Dark halo response and the stellar initial mass function in early-type and late-type galaxies , 2010, 1012.5859.

[32]  R. Nichol,et al.  GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.

[33]  Joel Primack,et al.  GALAXIES IN ΛCDM WITH HALO ABUNDANCE MATCHING: LUMINOSITY–VELOCITY RELATION, BARYONIC MASS–VELOCITY RELATION, VELOCITY FUNCTION, AND CLUSTERING , 2010, 1005.1289.

[34]  A. Klypin,et al.  DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.

[35]  B. Willman,et al.  Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows , 2009, Nature.

[36]  M. Zwaan,et al.  The velocity function of gas-rich galaxies , 2009, 0912.1754.

[37]  E. Kirby,et al.  LOCAL GROUP DWARF ELLIPTICAL GALAXIES. II. STELLAR KINEMATICS TO LARGE RADII IN NGC 147 AND NGC 185 , 2009, 0911.3654.

[38]  Y. Jing,et al.  THE VELOCITY FUNCTION IN THE LOCAL ENVIRONMENT FROM ΛCDM AND ΛWDM CONSTRAINED SIMULATIONS , 2009, 0906.0585.

[39]  A. Montero-Dorta,et al.  The SDSS DR6 luminosity functions of galaxies , 2008, 0806.4930.

[40]  Stefan Gottloeber,et al.  The ART of Cosmological Simulations , 2008, 0803.4343.

[41]  K. Chae Galaxy evolution from strong‐lensing statistics: the differential evolution of the velocity dispersion function in concord with the Λ cold dark matter paradigm , 2008, 0811.0560.

[42]  F. Walter,et al.  HIGH-RESOLUTION DARK MATTER DENSITY PROFILES OF THINGS DWARF GALAXIES: CORRECTING FOR NONCIRCULAR MOTIONS , 2008, 0810.2119.

[43]  E. Brinks,et al.  THINGS: THE H i NEARBY GALAXY SURVEY , 2008, 0810.2125.

[44]  Beth Willman,et al.  A common mass scale for satellite galaxies of the Milky Way , 2008, Nature.

[45]  A. Klypin,et al.  The emptiness of voids: yet another overabundance problem for the Λ cold dark matter model , 2008, 0807.0924.

[46]  J. Stadel,et al.  Clumps and streams in the local dark matter distribution , 2008, Nature.

[47]  A. Begum,et al.  FIGGS: Faint Irregular Galaxies GMRT Survey – overview, observations and first results , 2008, 0802.3982.

[48]  I. Karachentsev,et al.  Mining the Local Volume , 2007, 0710.0520.

[49]  M. Viel,et al.  How cold is cold dark matter? Small-scales constraints from the flux power spectrum of the high-redshift lyman-alpha forest. , 2007, Physical review letters.

[50]  Helmut Jerjen,et al.  Galaxies in the local volume , 2008 .

[51]  Edward J. Shaya,et al.  Tip of the Red Giant Branch Distances. II. Zero-Point Calibration , 2007, astro-ph/0701518.

[52]  Changbom Park,et al.  Internal and Collective Properties of Galaxies in the Sloan Digital Sky Survey , 2006, astro-ph/0611607.

[53]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[54]  J. Wadsley,et al.  The removal of cusps from galaxy centres by stellar feedback in the early Universe , 2006, Nature.

[55]  H. Trac,et al.  Can sterile neutrinos be the dark matter? , 2006, Physical review letters.

[56]  R. Wechsler,et al.  Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.

[57]  Risa H. Wechsler,et al.  The Physics of Galaxy Clustering. I. A Model for Subhalo Populations , 2005 .

[58]  Neta A. Bahcall,et al.  Cosmic Homogeneity Demonstrated with Luminous Red Galaxies , 2004, astro-ph/0411197.

[59]  J. Brinkmann,et al.  The Properties and Luminosity Function of Extremely Low Luminosity Galaxies , 2004, astro-ph/0410164.

[60]  I. Karachentsev The Local Group and Other Neighboring Galaxy Groups , 2005 .

[61]  W. K. Huchtmeier,et al.  A Catalog of Neighboring Galaxies , 2004 .

[62]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[63]  P. Shapiro,et al.  Photoevaporation of cosmological minihaloes during reionization , 2003, astro-ph/0307266.

[64]  M. SubbaRao,et al.  The Velocity Dispersion Function of Early-Type Galaxies , 2003, astro-ph/0303092.

[65]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[66]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[67]  R. Sancisi,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) The Westerbork HI Survey of Spiral and Irregular Galaxies I. HI Imaging of Late-type Dwarf Galaxies , 2002 .

[68]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The bJ-band galaxy luminosity function and survey selection function , 2001, astro-ph/0111011.

[69]  Rachel S. Somerville,et al.  ΛCDM-based Models for the Milky Way and M31. I. Dynamical Models , 2001, astro-ph/0110390.

[70]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[71]  D. Weinberg,et al.  Hierarchical Galaxy Formation and Substructure in the Galaxy’s Stellar Halo , 2000, astro-ph/0007295.

[72]  K. Freeman,et al.  The Various Kinematics of Dwarf Irregular Galaxies in Nearby Groups and Their Dark Matter Distributions , 2000 .

[73]  J. Ostriker,et al.  Halo Formation in Warm Dark Matter Models , 2000, astro-ph/0010389.

[74]  O. Valenzuela,et al.  Substructure and halo density profiles in a Warm Dark Matter Cosmology , 2000, astro-ph/0004115.

[75]  The dearth of halo dwarf galaxies: is there power on short scales? , 1999, Physical review letters.

[76]  The Velocity Function of Galaxies , 1999, astro-ph/9908075.

[77]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[78]  F. Prada,et al.  Where are the missing galactic satellites? , 1999, astro-ph/9901240.

[79]  Abraham Loeb,et al.  The Photoevaporation of Dwarf Galaxies during Reionization , 1999, astro-ph/9901114.

[80]  A. Ferrara,et al.  Starburst-driven Mass Loss from Dwarf Galaxies: Efficiency and Metal Ejection , 1998, astro-ph/9801237.

[81]  U. California,et al.  Semi-analytic modelling of galaxy formation: The local Universe , 1998, astro-ph/9802268.

[82]  Shude Mao,et al.  The formation of galactic discs , 1997 .

[83]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[84]  K. Shimasaku Velocity functions of galaxies and clusters of galaxies. , 1993 .

[85]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[86]  S. Cole,et al.  Biased clustering in the cold dark matter cosmogony , 1989 .

[87]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[88]  R. Kraan-Korteweg,et al.  A Catalogue of Galaxies within 10 MPC , 1979 .