The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate

We analyze the computability and the complexity of various definitions of spectral radii for sets of matrices. We show that the joint and generalized spectral radii of two integer matrices are not approximable in polynomial time, and that two related quantities—the lower spectral radius and the largest Lyapunov exponent—are not algorithmically approximable.

[1]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[2]  Jeffrey D. Ullman,et al.  Formal languages and their relation to automata , 1969, Addison-Wesley series in computer science and information processing.

[3]  M. Paterson Unsolvability in 3 × 3 Matrices , 1970 .

[4]  J. Kingman Subadditive Ergodic Theory , 1973 .

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  M. Garey Johnson: computers and intractability: a guide to the theory of np- completeness (freeman , 1979 .

[7]  Robert K. Brayton,et al.  Constructive stability and asymptotic stability of dynamical systems , 1980 .

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  John N. Tsitsiklis,et al.  On the stability of asynchronous iterative processes , 1986, 1986 25th IEEE Conference on Decision and Control.

[10]  Joel E. Cohen,et al.  Random matrices and their applications , 1986 .

[11]  Jos B. T. M. Roerdink,et al.  The biennial life strategy in a random environment , 1987 .

[12]  John N. Tsitsiklis,et al.  The Complexity of Markov Decision Processes , 1987, Math. Oper. Res..

[13]  John N. Tsitsiklis,et al.  On the control of discrete-event dynamical systems , 1987, 26th IEEE Conference on Decision and Control.

[14]  Joel E. Cohen,et al.  Subadditivity, generalized products of random matrices and operations research , 1988 .

[15]  J. Roerdink The biennial life strategy in a random environment , 1989 .

[16]  K. Ravishankar Power law scaling of the top Lyapunov exponent of a Product of Random Matrices , 1989 .

[17]  P. Bougerol Filtre de Kalman Bucy et exposants de Lyapounov , 1991 .

[18]  H. Crauel,et al.  Lyapunov Exponents: Proceedings of a Conference Held in Oberwolfach, May 28-June 2, 1990 , 1991 .

[19]  R. Darling The Lyapunov exponent for products of infinite-dimensional random matrices , 1991 .

[20]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[21]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[22]  R. Lima,et al.  Exact Lyapunov exponent for infinite products of random matrices , 1994, chao-dyn/9407013.

[23]  L. Elsner The generalized spectral-radius theorem: An analytic-geometric proof , 1995 .

[24]  J. Lagarias,et al.  The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .

[25]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[26]  Yuri V. Matiyasevich,et al.  Decision problems for semi-Thue systems with a few rules , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[27]  J. Tsitsiklis,et al.  The spectral radius of a pair of matrices is hard to compute , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[28]  G. Gripenberg COMPUTING THE JOINT SPECTRAL RADIUS , 1996 .

[29]  J. Tsitsiklis,et al.  Complexity of elementary hybrid systems , 1997, 1997 European Control Conference (ECC).

[30]  John N. Tsitsiklis,et al.  When is a Pair of Matrices Mortal? , 1997, Inf. Process. Lett..

[31]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[32]  John N. Tsitsiklis,et al.  Complexity of stability and controllability of elementary hybrid systems , 1999, Autom..