A simple method for creating wide-field visual stimulus for electrophysiology: mapping and analyzing receptive fields using a hemispheric display.

Modern neurophysiological and psychophysical studies of vision are typically based on computer-generated stimuli presented on flat screens. While this approach allows precise delivery of stimuli, it suffers from a fundamental limitation in terms of the maximum achievable spatial coverage. This constraint becomes important in studies that require stimulation of large expanses of the visual field, such as those involving the mapping of receptive fields throughout the extent of a cortical area or subcortical nucleus, or those comparing neural response properties across a wide range of eccentricities. Here we describe a simple and highly cost-effective method for the projection of computer-generated stimuli on a hemispheric screen, which combines the advantages of computerized control and wide-field (100° × 75°) delivery, without the requirement of highly specialized hardware. The description of the method includes programming techniques for the generation of stimuli in spherical coordinates and for the quantitative determination of receptive field sizes and shapes. The value of this approach is demonstrated by quantitative electrophysiological data obtained in the far peripheral representations of various cortical areas, including automated mapping of receptive field extents in cortex that underwent plasticity following lesions.

[1]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[2]  D. Tank,et al.  Intracellular dynamics of hippocampal place cells during virtual navigation , 2009, Nature.

[3]  M G Rosa,et al.  Retinal detachment induces massive immediate reorganization in visual cortex. , 1995, Neuroreport.

[4]  M G Rosa,et al.  Monocular focal retinal lesions induce short–term topographic plasticity in adult cat visual cortex , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[5]  Marcello G P Rosa,et al.  Brain maps, great and small: lessons from comparative studies of primate visual cortical organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[7]  Brian A. Wandell,et al.  Plasticity and stability of visual field maps in adult primary visual cortex , 2009, Nature Reviews Neuroscience.

[8]  U. Eysel,et al.  Dynamics and specificity of cortical map reorganization after retinal lesions. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  P. Bourke Using a spherical mirror for projection into immersive environments , 2005 .

[10]  P. Z. Marmarelis,et al.  Analysis of Physiological Systems: The White-Noise Approach , 2011 .

[11]  J. Kaas,et al.  Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. , 1990, Science.

[12]  A. Yagi,et al.  Backscroll illusion in far peripheral vision. , 2007, Journal of vision.

[13]  J. R. Smith,et al.  Coordinate systems and map projections , 1973 .

[14]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[15]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[16]  H. J. Luhmann,et al.  Horizontal Interactions in Cat Striate Cortex: III. Ectopic Receptive Fields and Transient Exuberance of Tangential Interactions , 1990, The European journal of neuroscience.

[17]  G. Elston,et al.  The second visual area in the marmoset monkey: Visuotopic organisation, magnification factors, architectonical boundaries, and modularity , 1997, The Journal of comparative neurology.

[18]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[19]  E. Batschelet Circular statistics in biology , 1981 .

[20]  Andrew T. A. Wood,et al.  Some notes on the fisher–bingham family on the sphere , 1988 .

[21]  A. A. Skavenski,et al.  Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey , 2004, Experimental Brain Research.

[22]  M G Rosa,et al.  Topography and extent of visual-field representation in the superior colliculus of the megachiropteran Pteropus , 1994, Visual Neuroscience.

[23]  P. Maclean,et al.  Unit analysis of visual input to posterior limbic cortex. I. Photic stimulation. , 1965, Journal of neurophysiology.

[24]  G. Elston,et al.  Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): Middle temporal area, middle temporal crescent, and surrounding cortex , 1998, The Journal of comparative neurology.

[25]  M G Rosa,et al.  Retinotopic orgarnzation of the primary visual cortex of flying foxes (Pteropus poliocephalus and pteropus scapulatus) , 1993, The Journal of comparative neurology.

[26]  B. C. Motter,et al.  The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  A. Trevelyan,et al.  An experimentally induced duplication of retinotopic mapping within the hamster primary visual cortex , 2007, The European journal of neuroscience.

[28]  R Gattass,et al.  Representation of the visual field in the second visual area in the Cebus monkey , 1988, The Journal of comparative neurology.

[29]  Sarah A. Dunlop,et al.  Functional Topography and Integration of the Contralateral and Ipsilateral Retinocollicular Projections of Ephrin-A−/− Mice , 2008, The Journal of Neuroscience.

[30]  W. J. Whiten,et al.  Fitting Mixtures of Kent Distributions to Aid in Joint Set Identification , 2001 .

[31]  Nicholas I. Fisher,et al.  Statistical Analysis of Spherical Data. , 1987 .

[32]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  William H. Press,et al.  Numerical recipes , 1990 .

[34]  J. Kaas,et al.  Responses of Neurons in the Middle Temporal Visual Area After Long-Standing Lesions of the Primary Visual Cortex in Adult New World Monkeys , 2003, The Journal of Neuroscience.

[35]  W. Maguire,et al.  Visuotopic organization of the prelunate gyrus in rhesus monkey , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  T. Wiesel,et al.  Receptive field dynamics in adult primary visual cortex , 1992, Nature.

[37]  Marcello G P Rosa,et al.  Preparation for the in vivo recording of neuronal responses in the visual cortex of anaesthetised marmosets (Callithrix jacchus). , 2003, Brain research. Brain research protocols.

[38]  Stephen G. Walker,et al.  On the Fisher–Bingham distribution , 2009, Stat. Comput..

[39]  Leo L. Lui,et al.  Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity , 2010, The European journal of neuroscience.

[40]  Hunter G. Hoffman,et al.  The Illusion of Presence in Immersive Virtual Reality during an fMRI Brain Scan , 2003, Cyberpsychology Behav. Soc. Netw..

[41]  J. Kent The Fisher‐Bingham Distribution on the Sphere , 1982 .

[42]  M G Rosa,et al.  Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus) , 1996, The Journal of comparative neurology.

[43]  M G Rosa,et al.  Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti). , 1997, Journal of neurophysiology.

[44]  H H Bülthoff,et al.  Detection of animals in natural images using far peripheral vision , 2001, The European journal of neuroscience.

[45]  M. Rosa,et al.  A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision , 2006, The European journal of neuroscience.

[46]  R Quian Quiroga,et al.  Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  B. C. Motter,et al.  Functional properties of parietal visual neurons: radial organization of directionalities within the visual field , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  R. Wurtz,et al.  Response of monkey MST neurons to optic flow stimuli with shifted centers of motion , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  Sabine Kastner,et al.  Neurons with radial receptive fields in monkey area V4A: evidence of a subdivision of prelunate gyrus based on neuronal response properties , 2002, Experimental Brain Research.

[50]  Leo L. Lui,et al.  Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus) , 2007, The European journal of neuroscience.

[51]  Marie E. Burns,et al.  What are the Effects of Severe Visual Impairment on the Cortical Organization and Connectivity of Primary Visual Cortex? , 2009, Front. Neuroanat..

[52]  G. Elston,et al.  Visual Responses of Neurons in the Middle Temporal Area of New World Monkeys after Lesions of Striate Cortex , 2000, The Journal of Neuroscience.

[53]  I. Ohzawa,et al.  Encoding of binocular disparity by complex cells in the cat's visual cortex. , 1996, Journal of neurophysiology.

[54]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[55]  J. Kaas,et al.  Receptive-field properties of deafferentated visual cortical neurons after topographic map reorganization in adult cats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  M I Sereno,et al.  Analysis of retinotopic maps in extrastriate cortex. , 1994, Cerebral cortex.

[57]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[58]  Nicholas V. Swindale,et al.  Orientation tuning curves: empirical description and estimation of parameters , 1998, Biological Cybernetics.

[59]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.