Vertical distributions and relationships of cloud occurrence frequency as observed by MISR, AIRS, MODIS, OMI, CALIPSO, and CloudSat

[1] Multi-sensor cloud height observations are investigated and compared in terms of vertical and latitudinal distributions of monthly mean cloud occurrence frequency (COF). Although this study emphasizes the standard Multiangle Imaging SpectroRadiometer (MISR) cloud top height (CTH) retrieval, the strengths and weakness among different passive and active remote sensing techniques with respect to cloud detection and height assessment are also discussed. The standard MISR CTH retrieval is less sensitive to high thin cirrus than the Atmospheric Infrared Sounder (AIRS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), but MISR provides more accurate CTH retrievals in the middle and lower troposphere compared with other passive sensors, especially for clouds in the planetary boundary layer.

[1]  Jan-Peter Muller,et al.  Operational retrieval of cloud-top heights using MISR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[2]  R. Davies,et al.  Simultaneous retrieval of cloud motion and height from polar‐orbiter multiangle measurements , 2001 .

[3]  Simone Tanelli,et al.  CloudSat's Cloud Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Piet Stammes,et al.  Cloud pressure retrieval using the O2‐O2 absorption band at 477 nm , 2004 .

[5]  Susan Paradise,et al.  MISR stereoscopic image matchers: techniques and results , 2002, IEEE Trans. Geosci. Remote. Sens..

[6]  Michael J. Garay,et al.  Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship-based observations , 2008 .

[7]  Jan-Peter Muller,et al.  Intercomparison of multiple years of MODIS, MISR and radar cloud-top heights , 2005 .

[8]  Tristan L'Ecuyer,et al.  Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part II: Ice Clouds , 2006 .

[9]  Edward J. Zipser,et al.  Implications of the differences between daytime and nighttime CloudSat observations over the tropics , 2008 .

[10]  Jacques Pelon,et al.  Comparison of cloud statistics from spaceborne lidar systems , 2008 .

[11]  William L. Smith,et al.  AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. , 2006 .

[12]  David M. Winker,et al.  The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds , 2003, SPIE Asia-Pacific Remote Sensing.

[13]  Richard A. Frey,et al.  Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5 , 2008 .

[14]  Piet Stammes,et al.  Click Here for Full Article , 1989 .

[15]  Thomas P. Ackerman,et al.  An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo‐derived cloud top heights and cloud top winds using ground‐based radar, lidar, and microwave radiometers , 2007 .

[16]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[17]  Simone Tanelli,et al.  Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets , 2009 .

[18]  Richard H. Johnson,et al.  Trimodal Characteristics of Tropical Convection , 1999 .

[19]  Robert J. D. Spurr,et al.  Evaluation of the OMI cloud pressures derived from rotational Raman scattering by comparisons with other satellite data and radiative transfer simulations , 2008 .

[20]  Michael J. Garay,et al.  The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievals , 2007 .

[21]  W. Paul Menzel,et al.  MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results , 2008 .

[22]  Moustafa T. Chahine,et al.  Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount , 2007 .

[23]  Christopher D. Barnet,et al.  Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover , 2006 .

[24]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[25]  Steven A. Ackerman,et al.  Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP , 2008 .

[26]  W. Menzel,et al.  Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals , 2007 .

[27]  D. Randall,et al.  Climate models and their evaluation , 2007 .

[28]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[29]  R. Davies,et al.  Cloud motion vectors from MISR using sub-pixel enhancements , 2007 .

[30]  Piet Stammes,et al.  Effective cloud fractions from the Ozone Monitoring Instrument: Theoretical framework and validation , 2008 .

[31]  J. Muller,et al.  The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces , 2005 .