A comparison of heuristic search algorithms for molecular docking

This paper describes the implementation and comparison of four heuristic search algorithms (genetic algorithm, evolutionary programming, simulated annealing and tabu search) and a random search procedure for flexible molecular docking. To our knowledge, this is the first application of the tabu search algorithm in this area. The algorithms are compared using a recently described fast molecular recognition potential function and a diverse set of five protein–ligand systems. Statistical analysis of the results indicates that overall the genetic algorithm performs best in terms of the median energy of the solutions located. However, tabu search shows a better performance in terms of locating solutions close to the crystallographic ligand conformation. These results suggest that a hybrid search algorithm may give superior results to any of the algorithms alone.

[1]  Andrew Smellie,et al.  Poling: Promoting conformational variation , 1995, J. Comput. Chem..

[2]  Juan C. Meza,et al.  A comparison of a direct search method and a genetic algorithm for conformational searching , 1996 .

[3]  Richard S. Judson,et al.  Docking flexible molecules: A case study of three proteins , 1995, J. Comput. Chem..

[4]  Daniel A. Gschwend,et al.  Orientational sampling and rigid-body minimization in molecular docking revisited: On-the-fly optimization and degeneracy removal , 1996, J. Comput. Aided Mol. Des..

[5]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[6]  Jiri Pospichal,et al.  Fast Evaluation of Chemical Distance by Tabu Search Algorithm , 1994, Journal of chemical information and computer sciences.

[7]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[8]  D. Fogel,et al.  A comparison of methods for self-adaptation in evolutionary algorithms. , 1995, Bio Systems.

[9]  J. Bolin,et al.  Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. I. General features and binding of methotrexate. , 1982, The Journal of biological chemistry.

[10]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[11]  W. Guida,et al.  Probing the conformational space available to inhibitors in the thermolysin active site using Monte Carlo/energy minimization techniques , 1992 .

[12]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[13]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[14]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[15]  Kevin P. Clark,et al.  Flexible ligand docking without parameter adjustment across four ligand–receptor complexes , 1995, J. Comput. Chem..

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  Andrew E. Torda,et al.  Local elevation: A method for improving the searching properties of molecular dynamics simulation , 1994, J. Comput. Aided Mol. Des..

[18]  Philip M. Dean,et al.  Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins , 1995, J. Comput. Aided Mol. Des..

[19]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[20]  J. Scott Dixon,et al.  A good ligand is hard to find: Automated docking methods , 1993 .

[21]  A. Leach,et al.  Ligand docking to proteins with discrete side-chain flexibility. , 1994, Journal of molecular biology.

[22]  PatrickY.-S. Lam,et al.  Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. , 1994, Science.

[23]  Thomas Lengauer,et al.  Placement of medium-sized molecular fragments into active sites of proteins , 1996, J. Comput. Aided Mol. Des..

[24]  R. Glen,et al.  Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. , 1995, Journal of molecular biology.

[25]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[26]  Ruben Abagyan,et al.  ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation , 1994, J. Comput. Chem..

[27]  Gennady M Verkhivker,et al.  Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. , 1995, Chemistry & biology.

[28]  S Cusack,et al.  Influenza B virus neuraminidase can synthesize its own inhibitor. , 1993, Structure.

[29]  Jacek Klinowski,et al.  Taboo Search: An Approach to the Multiple Minima Problem , 1995, Science.

[30]  W. Clark Still,et al.  An unbounded systematic search of conformational space , 1991 .

[31]  S Vajda,et al.  Flexible docking and design. , 1995, Annual review of biophysics and biomolecular structure.

[32]  Philip M. Dean,et al.  Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions , 1995, J. Comput. Aided Mol. Des..

[33]  Randy J. Read,et al.  Monte Carlo algorithms for docking to proteins , 1995 .

[34]  H Brandstetter,et al.  Refined 2.3 A X-ray crystal structure of bovine thrombin complexes formed with the benzamidine and arginine-based thrombin inhibitors NAPAP, 4-TAPAP and MQPA. A starting point for improving antithrombotics. , 1992, Journal of molecular biology.

[35]  Philip M. Dean,et al.  Hydration in drug design. 2. Influence of local site surface shape on water binding , 1995, J. Comput. Aided Mol. Des..

[36]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[37]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[38]  Jean-Marie Dubois,et al.  Darwinian Adaptative Simulated Annealing , 1993 .

[39]  J. Scott Dixon,et al.  Flexible ligand docking using a genetic algorithm , 1995, J. Comput. Aided Mol. Des..

[40]  Vanderlaan,et al.  EVOLUTIONARY PROGRAMMING IV , 1995 .

[41]  Akiko Itai,et al.  Application and evaluation of the automated docking method. , 1993 .

[42]  A. Itai,et al.  DEVELOPMENT OF AN EFFICIENT AUTOMATED DOCKING METHOD , 1993 .

[43]  David S. Goodsell,et al.  Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4 , 1996, J. Comput. Aided Mol. Des..

[44]  Robert P. Sheridan,et al.  FLOG: A system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[45]  Tang Renyuan,et al.  Combined strategy of improved simulated annealing and genetic algorithm for inverse problem , 1996 .

[46]  Thomas Lengauer,et al.  Computational methods for biomolecular docking. , 1996, Current opinion in structural biology.